Outline

- Chemical Bonding
- Ionic Compounds
- Covalent Compounds
- Bond Energy Length
- Electronegativity and Bond Polarity

Chemical Bonding

Ionic bonds...
electrons "transferred" between metal and nonmetal atoms
hold collection of ions together
Covalent bonds...
electrons are "shared" between nonmetal atoms
hold individual molecules together
Metallic bonds...
electrons "pool" between metal atoms
hold collection of atoms together

Ionic Compounds

Atoms represented as Lewis Symbols...
...element symbol and valence electrons (as dots)
..."complete level" given by 0 or 8 electrons
lithium (I)
-Li
Li
oxygen (VI) $: \ddot{\mathrm{O}} \cdot \quad[\because \ddot{\mathrm{O}}:)^{2-}$
Ions combine to form compound...

$$
\cdot \mathrm{Li}+\cdot \mathrm{Li}+: \ddot{\mathrm{O}} \cdot \rightarrow \mathrm{Li}^{+}(\ddot{\mathrm{O}}:)^{2-} \mathrm{Li}^{+}
$$

Attraction between oppositely charged ions is ionic bond

Energy change to produce gaseous ions from an ionic solid is lattice energy

Indicates strength of attraction of ions in solid state

LiF	$1047 \mathrm{~kJ} / \mathrm{mol}$
LiCl	$828 \mathrm{~kJ} / \mathrm{mol}$
LiBr	$787 \mathrm{~kJ} / \mathrm{mol}$
LiI	$732 \mathrm{~kJ} / \mathrm{mol}$

Lattice energies are predicted using Born-Haber cycle...

Consider: $\quad \mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{LiF}(\mathrm{s})$

$$
\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-616 \mathrm{~kJ}
$$

$\mathrm{Li}(\mathrm{s}) \rightarrow$	$\rightarrow \mathrm{Li}(\mathrm{g})$	$\Delta \mathrm{H}=161 \mathrm{~kJ}$	Sublimation
$\mathrm{Li}(\mathrm{g}) \rightarrow$	$\rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}^{-}$	$\Delta \mathrm{H}=521 \mathrm{~kJ}$	Ionization
$1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow$	$\rightarrow \mathrm{F}(\mathrm{g})$	$\Delta \mathrm{H}=77 \mathrm{~kJ}$	Dissociation
$\mathrm{F}(\mathrm{g})+\mathrm{e}^{-} \rightarrow$	$\rightarrow \mathrm{F}^{-}(\mathrm{g})$	$\Delta \mathrm{H}=-328 \mathrm{~kJ}$	Electron Affinity
$\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \rightarrow$	$\rightarrow \operatorname{LiF}(\mathrm{s})$	$\Delta \mathrm{H}=$? ? ? ? kJ	-(Lattice Energy)
$\mathrm{Li}(\mathrm{s})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow$	$\rightarrow \operatorname{LiF}(\mathrm{s})$	$\Delta \mathrm{H}=-616 \mathrm{~kJ}$	Formation!
-(Lattice Energy) kJ) $=-616 \mathrm{~kJ}-161 \mathrm{~kJ}-521 \mathrm{~kJ}-77 \mathrm{~kJ}+328$		
$=-1047 \mathrm{~kJ}$			
Lattice Energy	$=+\underline{1047} \mathrm{~kJ}$		

Lattice energy strengths depend on:

1. Ion charges
the larger the charges, the greater the attraction between the ions:
$\mathrm{LiF}\left(\mathrm{MP}=845^{\circ} \mathrm{C}\right) \quad \mathrm{BeO} \quad\left(\mathrm{MP}=2530{ }^{\circ} \mathrm{C}\right)$
2. Ion sizes
the smaller the ions, the closer they can get, and the greater their attraction:
$\mathrm{NaCl}\left(\mathrm{MP}=801^{\circ} \mathrm{C}\right) \quad \mathrm{KCl}\left(\mathrm{MP}=770{ }^{\circ} \mathrm{C}\right)$

Covalent Compounds

Composed of discrete molecules
Atoms share electrons to obtain stable, complete outer shells

Localized Electron Model... bonds between atoms formed from electron pairs in atomic orbitals

Lewis Structures
Bonding can be represented using electron dot notation, if each atom achieves a complete outer shell (octet, or duet for H)

Water $\mathrm{H} \cdot \mathrm{H} \cdot \dot{\mathrm{O}}: \underset{\mathrm{H}}{\mathrm{H} \mathrm{O}} \mathrm{H}: \underset{\mathrm{H}}{\mathrm{H}}:$ or $\mathrm{H}-\ddot{\mathrm{O}} \mathrm{H}:$ lone pairs
H

Fluorine, F_{2}
$: \ddot{\mathrm{F}}: \ddot{\mathrm{F}}: \quad: \ddot{\mathrm{F}}-\ddot{\mathrm{F}}: \quad$ single bond
Oxygen, O_{2}
$\ddot{0}:$: $:$
$\ddot{0}=\ddot{0}$
double bond

Nitrogen, N_{2}
$: N:: N: \quad: N \equiv N: \quad$ triple bond

Bond Energy and Length

Bond Order
The number of shared electron pairs of electrons

Bond Energy
The energy needed to break a bond

Bond Length
The distance between the nuclei of 2 bonding atoms

	F_{2}	O_{2}	$\mathrm{~N}_{2}$
Bond Order	1	2	3
Bond Energy $(\mathrm{kJ} / \mathrm{mol})$	154	495	941
Bond Length (nm)	0.142	0.121	0.110

Consider the following bonds:

$$
\mathrm{H}-\mathrm{F}, \mathrm{H}-\mathrm{Cl}, \mathrm{H}-\mathrm{Br}
$$

Which is the strongest?
H - F ($568 \mathrm{~kJ} / \mathrm{mol})$
Which is the weakest?
$\mathrm{H}-\mathrm{Br}(366 \mathrm{~kJ} / \mathrm{mol})$

Which is the shortest?
Which is the longest?

$$
\begin{aligned}
& H-F \quad(0.092 n m) \\
& H-\operatorname{Br}(0.141 n m)
\end{aligned}
$$

Bond energies can be used to approximate the reaction energy change, $\Delta \mathrm{H}_{\mathrm{rxn}}$:

$$
\Delta H_{r x n}=E_{\text {bonds broken }}-E_{\text {bonds formed }}
$$

Determine $\Delta \mathrm{H}_{\mathrm{rxn}}$ for: $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FF}_{2}(\mathrm{~g})$
Bond Energies:

$$
\begin{array}{ll}
\mathrm{O}=\mathrm{O} & 499 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~F}-\mathrm{F} & 157 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{O}-\mathrm{F} & 190 . \mathrm{kJ} / \mathrm{mol}
\end{array}
$$

Broken: $1 \mathrm{~mol}(499 \mathrm{~kJ} / \mathrm{mol})+2 \mathrm{~mol}(157 \mathrm{~kJ} / \mathrm{mol})=813 \mathrm{~kJ}$ Formed: $4 \mathrm{~mol}(190 . \mathrm{kJ} / \mathrm{mol})=760 . \mathrm{kJ}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=813 \mathrm{~kJ}-760 . \mathrm{kJ}=\underline{53 \mathrm{~kJ}}$

Determine $\Delta \mathrm{H}_{\mathrm{rxn}}$ for: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

$\mathrm{H}-\mathrm{H} \quad 436 \mathrm{~kJ} / \mathrm{mol} \quad \mathrm{C}-\mathrm{C} \quad 347 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}-\mathrm{H} \quad 414 \mathrm{~kJ} / \mathrm{mol} \quad \mathrm{C}=\mathrm{C} \quad 620 . \mathrm{kJ} / \mathrm{mol}$
Broken: $1(436 \mathrm{~kJ})+4(414 \mathrm{~kJ})+1(620 \mathrm{~kJ})=2712 \mathrm{~kJ}$ Formed: $6(414 \mathrm{~kJ})+1(347 \mathrm{~kJ})=2831 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=2712 \mathrm{~kJ}-2831 \mathrm{~kJ}=-119 \mathrm{~kJ}$

Determine $\Delta \mathrm{H}_{\mathrm{rxn}}$ for: $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{array}{llll}
\mathrm{C}-\mathrm{H} & 414 \mathrm{~kJ} / \mathrm{mol} & \mathrm{O}=\mathrm{O} & 499 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}-\mathrm{C} & 347 \mathrm{~kJ} / \mathrm{mol} & \mathrm{C}=\mathrm{O} & 799 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}-\mathrm{O} & 460 \mathrm{~kJ} / \mathrm{mol} & &
\end{array}
$$

Balanced Equation: $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Problem Cont'd...

$$
\mathrm{CO}_{2}: \quad \mathrm{O}=\mathrm{C}=\mathrm{O} \quad \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{H}-\mathrm{O}-\mathrm{H}
$$

Broken:
$8(414 \mathrm{~kJ})+2(347 \mathrm{~kJ})+5(499 \mathrm{~kJ})=6501 \mathrm{~kJ}$
Formed:
$6(799 \mathrm{~kJ})+8(460 \mathrm{~kJ})=8474 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=6501 \mathrm{~kJ}-8474 \mathrm{~kJ}=-1973 \mathrm{~kJ}$

Electronegativity and Bond Polarity

Electronegativity (EN)

An atom's attraction for shared electrons
Highest: F (4.0) Lowest: Fr (0.7)

Indicates the type of bonding between atoms
EN Difference Bonding
< 0.4 Nonpolar Covalent
0.4-1.7 Polar Covalent
> 1.7
Ionic

A bond between two atoms with same EN's is a nonpolar covalent bond because bonding $e^{-/ s}$ are shared equally

Nonpolar covalent bonds have 0\% ionic character
$\mathrm{Cl}-\mathrm{Cl}$
$\mathrm{Br}-\mathrm{Br}$
3.03 .0
2.82 .8

A bond between two atoms with different EN's is a polar covalent bond because bonding e-'s are not shared equally

Polar covalent bonds have 1% to 49% ionic character

$$
\begin{array}{ccc}
\mathrm{H}-\mathrm{Cl} & \mathrm{H}-\mathrm{Br} \\
2.1 & 3.0 & 2.1 \\
\delta+ & \delta- & \delta+ \\
\delta- & \delta-
\end{array}
$$

A polar bond is dipolar, has a dipole moment
A dipole moment arrow shows the positive and negative ends of the bonds, and the magnitude of the polarity

$\mathrm{H}-\mathrm{Br}$

A bond between two atoms with very different EN's is an ionic bond because e-'s are transferred

Ionic bonds have 50% or more ionic character

$$
\begin{aligned}
& \mathrm{Na}-\mathrm{Cl} \\
& 0.93 .0 \\
& \mathrm{Na}^{+} \mathrm{Cl}^{-}
\end{aligned}
$$

