Outline

- Solutions
- Factors Affecting Solubility
- Concentration Units
- Solution Stoichiometry

Solutions

Solution A homogeneous mixture
Solvent The major component of the solution
Solute The minor component of a solution
Solubility describes amount of solute that will dissolve in a solvent
Aqueous solutions are those in which water is the dissolving medium
Ability of water to dissolve substances results from its unequal charge distribution
"Charged ends" of water molecule interact with solute molecules (ions)

When the maximum amount of solute has been dissolved, the solution is saturated

Dissolving and crystallizing rates equal in a saturated solutions
If less than the maximum amount of solute is dissolved, the solution is undersaturated

If more than the maximum amount of solute is dissolved, the solution is supersaturated

Factors Affecting Solubility

1. Like Dissolve Like
nonpolar substances dissolve in nonpolar substances
polar / ionic substances dissolve in polar substances
2. Pressure

No effect on solid and liquid solubility
Increasing the pressure increases gas solubility
3. Temperature

Increasing the temperature generally increases the solid's solubility

Increasing the temperature decreases gas solubility

Concentration Units

Concentration is the amount of solute dissolved in a given quantity of solvent or solution

1. mass-mass percent, $\quad \%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solution }} \times 100$
2. volume-volume percent, $\%(\mathrm{v} / \mathrm{v})=\frac{\mathrm{mL} \text { solute }}{\mathrm{mL} \text { solution }} \times 100$
3. mass-volume percent, $\%(m / v)=\frac{g \text { solute }}{m L \text { solution }} \times 100$

What is concentration, \% (m / m), of a sodium chloride solution made by dissolving 5.4 g NaCl in 75.0 g of water?
solute: 5.4 g NaCl
solvent: $75.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
solution: $5.4 \mathrm{~g} \mathrm{NaCl}+75.0 \mathrm{~g} \mathrm{H} \mathrm{O}$
$\%(\mathrm{~m} / \mathrm{m})=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solution }} \times 100$

$$
=\frac{5.4 \mathrm{~g}}{5.4 \mathrm{~g}+75.0 \mathrm{~g}} \times 100=6.7 \%(\mathrm{~m} / \mathrm{m}) \mathrm{NaCl}
$$

What is concentration, \% (v/v), of an alcohol solution made by dissolving 15 mL alcohol in water, if the total volume is 375 mL ?
solute: 15 mL alcohol
solvent: water
solution: 375 mL of alcohol and water

$$
\begin{aligned}
\%(\mathrm{v} / \mathrm{v}) & =\frac{\mathrm{mL} \text { solute }}{\mathrm{mL} \text { solution }} \times 100 \\
& =\frac{15 \mathrm{~mL}}{375 \mathrm{~mL}} \times 100=4.0 \%(\mathrm{v} / \mathrm{v}) \text { alcohol }
\end{aligned}
$$

How many grams of sodium hydroxide are present in 85 g of 15% (m / m) NaOH solution?

85 g solution $\times \frac{15 \mathrm{~g} \mathrm{NaOH}}{100 \mathrm{~g} \text { solution }}=\underline{13 \mathrm{~g} \mathrm{NaOH}}$
What masses of sodium hydroxide and water are needed to produce 355 g of $15 \%(\mathrm{~m} / \mathrm{m}) \mathrm{NaOH}$ solution
355 g solution $\times \frac{15 \mathrm{~g} \mathrm{NaOH}}{100 \mathrm{~g} \text { solution }}=53 \mathrm{~g} \mathrm{NaOH}$

355 g solution $-53 \mathrm{~g} \mathrm{NaOH}=302 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Percent represents parts-per-hundred (x 100)...
Parts-per-million $(\times 1,000,000), \quad \mathrm{ppm}(\mathrm{m} / \mathrm{m})=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solution }} \times 10^{6}$

Molarity (M) is the number of moles of solute per liter of solution

Determine the molarity of a 875 mL solution containing 14.5 g KBr .

$$
\begin{aligned}
& 14.5 \mathrm{~g} \mathrm{KBr} \times \frac{1 \mathrm{~mol} \mathrm{KBr}}{119.00 \mathrm{~g} \mathrm{KBr}}=0.1218 \mathrm{~mol} \mathrm{KBr} \\
& \mathrm{M}=\frac{\text { mol solute }}{\mathrm{L} \text { solution }}=\frac{0.1218 \mathrm{~mol} \mathrm{KBr}}{0.875 \mathrm{~L}}=\underline{0.139 \mathrm{M} \mathrm{KBr}}
\end{aligned}
$$

A $40.00 \%(\mathrm{~m} / \mathrm{m})$ aqueous solution of formic acid $\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right)$ has a density of $1.098 \mathrm{~g} / \mathrm{mL}$. What is the molarity of this solution?

100 g solution $\times \frac{1 \mathrm{~mL}}{1.098 \mathrm{~g} \text { solution }} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.09107 \mathrm{~L}$
100 g solution $\times \frac{40.00 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}_{2}}{100 \mathrm{~g} \text { solution }}=40.00 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}_{2}$
$40.00 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}_{2}}{46.03 \mathrm{~g} \mathrm{CH}_{2} \mathrm{O}_{2}}=0.8690 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}_{2}$
$\frac{0.8690 \mathrm{~mol} \mathrm{CH}_{2} \mathrm{O}_{2}}{0.09107 \mathrm{~L}}=9.542 \mathrm{M}$

What is the mass-mass percent of a $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, given that its density is $1.84 \mathrm{~g} / \mathrm{mL}$?

$$
\begin{aligned}
& 1 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1.84 \mathrm{~g}}{\mathrm{~mL}}=1840 \mathrm{~g} \text { solution } \\
& 1 \mathrm{~L} \times \frac{18.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}=18.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

$18.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{98.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol}}=1765 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{1765 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1840 \mathrm{~g} \text { solution }} \times 100=\underline{95.9 \%(\mathrm{~m} / \mathrm{m})}$

Solution Stoichiometry

Dilution is when more solvent is added to lower the concentration of the solution
number of moles of solute does not change moles solute (conc.) = moles solute (diluted)

$$
M_{c} \times V_{c}=M_{d} \times V_{d}
$$

What's molarity of solution prepared by mixing 65 mL of 0.95 M HNO_{3} with 135 mL of water?

$$
M_{d}=\frac{M_{c} \times V_{c}}{V_{d}}=\frac{(0.95 \mathrm{M})(65 \mathrm{~mL})}{(65 \mathrm{ml}+135 \mathrm{~mL})}=\underline{0.31 \mathrm{M} \mathrm{HNO}_{3}}
$$

Consider the following reaction...

$$
3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Calculate the volume of $0.25 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ needed to react with 15.0 mL of $0.50 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
$15.0 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{0.50 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}{\mathrm{~L}}=0.0075 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$0.0075 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{2 \mathrm{Na}_{3} \mathrm{PO}_{4}}{3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}=0.0050 \mathrm{~mol} \mathrm{Na} 3 \mathrm{PO}_{4}$
$0.0050 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~L}}{0.25 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}=\underline{0.020 \mathrm{~L}} \quad(20 \mathrm{~mL})$

Consider the following reaction...

$$
3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

How many grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are produced from reaction of 25.0 mL of $0.50 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ with 25.0 mL of $0.50 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
$0.0250 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L}}=0.0125 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
$0.0250 \mathrm{~L} \times \frac{0.50 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}{1 \mathrm{~L}}=0.0125 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}$

Consider the following reaction...

$$
3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Problem Continued...
$0.01 \underline{2} 5 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}=0.00416 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$0.0125 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{2 \mathrm{~mol} \mathrm{Na}_{3} \mathrm{PO}_{4}}=0.00625 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$0.00416 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{310.18 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{1 \mathrm{~mol}}=\underline{1.3 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}$

