Outline

- Acids and Bases
- Acid and Base Reactions
- Aqueous Solutions
- Ionization of Water
- Buffers

Acids and Bases

Brønsted - Lowry acids are substances capable of donating hydrogen ions (H^{+})

Brønsted - Lowry bases are substances capable of accepting hydrogen ions (H^{+})

If water accepts a hydrogen ion it forms hydronium ion

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}
$$

An acid reacts with a base by transferring a hydrogen ion from the acid to the base

$$
\left.\begin{array}{ccc}
\mathrm{HCl}(\mathrm{aq})
\end{array}+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \rightarrow \underset{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})}{\text { c. acid }}+\mathrm{Cl}^{-}(\mathrm{aq}) \text { c. base }\right) ~
$$

When an acid loses a hydrogen ion, it becomes a conjugate base

When a base gains a hydrogen ion, it becomes a conjugate acid

$$
\begin{aligned}
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \text { base acid c. acid c. base } \\
& \mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \text { acid base c. acid c. base }
\end{aligned}
$$

Acid and Base Reactions

Acids usually react with metals to produce hydrogen gas...
$2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}$
$3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{AI} \rightarrow 3 \mathrm{H}_{2}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Acids react with metal oxides to produce water...
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}$
$2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{CaO} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Sodium hydroxide reacts with aluminum to produce hydrogen gas!

Acids and bases react to produce salts (ionic compounds) in neutralization reactions

Amount of acid or base in solution is determined in a titration...

Acid or base is slowly added to until indicator in solution changes color (end point)

The end point indicates location of equivalence point... mol acid $=\mathrm{mol}$ base at the equivalence point!
36.0 mL of 0.105 M NaOH are needed to neutralize 25.0 mL of HCl . What's the HCl molarity?

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$36.0 \mathrm{~mL} \Rightarrow 0.0360 \mathrm{~L}$ and $25.0 \mathrm{~mL} \Rightarrow 0.0250 \mathrm{~L}$
$0.0360 \mathrm{~L} \times \frac{0.105 \mathrm{M} \mathrm{NaOH}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.00378 \mathrm{~mol} \mathrm{HCl}$
$\frac{0.00378 \mathrm{~mol} \mathrm{HCl}}{0.0250 \mathrm{~L}}=0.151 \mathrm{M} \mathrm{HCl}$
45.5 mL of 0.105 M NaOH are needed to neutralize 36.0 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What's the $\mathrm{H}_{2} \mathrm{SO}_{4}$ molarity?
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$45.5 \mathrm{~mL} \Rightarrow 0.0455 \mathrm{~L}$ and $36.0 \mathrm{~mL} \Rightarrow 0.0360 \mathrm{~L}$
$0.0455 \mathrm{~L} \times \frac{0.105 \mathrm{M} \mathrm{NaOH}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}}=0.002388 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\frac{0.002388 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{0.0360 \mathrm{~L}}=\underline{0.0663 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}}$

How many mL's of 0.25 M NaOH are needed to neutralize 36 mL of $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$36.0 \mathrm{~mL} \Rightarrow 0.0360 \mathrm{~L}$
$0.0360 \mathrm{~L} \times \frac{1.0 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{\mathrm{~L}} \times \frac{3 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.108 \mathrm{~mol} \mathrm{NaOH}$
$0.1 \underline{0} 8 \mathrm{~mol} \mathrm{NaOH} \times \frac{1 \mathrm{~L}}{0.25 \mathrm{~mol} \mathrm{NaOH}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=430 \mathrm{~mL} \mathrm{NaOH}$

How many mL's of $0.18 \mathrm{M} \mathrm{HNO}_{3}$ are needed to neutralize 48 mL of $2.0 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
$2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$48 \mathrm{~mL} \Rightarrow 0.048 \mathrm{~L}$
$0.048 \mathrm{~L} \times \frac{2.0 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{\mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=0.192 \mathrm{~mol} \mathrm{HNO}_{3}$
$0.192 \mathrm{~mol} \mathrm{HNO}_{3} \times \frac{1 \mathrm{~L}}{0.18 \mathrm{~mol} \mathrm{HNO}_{3}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=\underline{1100 \mathrm{~mL} \mathrm{HNO}_{3}}$

Aqueous Solutions

Salts (ionic compounds) dissolve in a process called dissociation
Acid molecules are "ripped" into ions when dissolved into water

$$
\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

This process is called ionization
Acids that ionize completely are strong acids
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$

Acids that ionize partially are weak acids

An electrolyte is a substance that when dissolved in water produces a solution that can conduct electricity

Strong electrolytes: completely ionized
Weak electrolytes: partially ionized
Nonelectrolytes: do not ionize
Strong acids are strong electrolytes
Bases acting as strong electrolytes are strong bases
alkali metal hydroxides, $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$

In net-ionic equations...

Strong electrolytes will be soluble salts, strong acids, and strong bases...

Write in "ionic form"!
Weak electrolytes will be insoluble salts, weak acids, and weak bases...

Write in "molecular form"!
Nonelectrolytes will be soluble molecular compounds and water...

Write in "molecular form"!

Ionic or molecular form?

HNO_{3}	ionic form	H^{+}and $\mathrm{NO}_{3}-$
BaCl_{2}	ionic form	Ba^{2+} and Cl-
CO_{2}	molecular form	CO_{2}
NaOH	ionic form	Na^{+}and OH^{-}
NH_{3}	molecular form	NH_{3}
HF	molecular form	HF

Ionization of Water

Water molecules ionize to a very small extent...

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Equal amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}are produced...

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M} \text { in pure water at } 25^{\circ} \mathrm{C}
$$

The product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$is constant...

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-7}\right) \times\left(1.0 \times 10^{-7}\right)=1.0 \times 10^{-14}
$$

Acidity of a solution depends on amount of hydronium...
If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, then solution is neutral
If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, then solution is acidic
If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, then solution is basic
Basic or acidic if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \times 10^{-9} \mathrm{M}$?

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{3.2 \times 10^{-9}}=3.1 \times 10^{-6} \mathrm{M}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right] \quad \Rightarrow \quad$ Basic
pH scale used to provide a convenient way to represent solution acidity
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
pH of pure water

$$
\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)=7.00
$$

if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.45 \times 10^{-11} \mathrm{M} \quad \mathrm{pH}=-\log \left(1.45 \times 10^{-11}\right)=10.839$
if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.2 \times 10^{-5} \mathrm{M} \quad \mathrm{pH}=-\log \left(4.2 \times 10^{-5}\right)=4.38$
if $\left[\mathrm{OH}^{-}\right]=1.62 \times 10^{-8} \mathrm{M} \quad \mathrm{pH}=-\log \left(\frac{1.0 \times 10^{-14}}{1.62 \times 10^{-8}}\right)=6.21$

Acidity of a solution depends on the pH ...
If $\mathrm{pH}=7.00$, then solution is neutral
If $\mathrm{pH}<7.00$, then solution is acidic
If $\mathrm{pH}>7.00$, then solution is basic

Basic or Acidic?
Lemon juice, $\mathrm{pH}=2.3 \quad$ acidic
Household ammonia, pH $=11.0$ basic
Urine, $\mathrm{pH}=6.0$
Blood, pH = 7.4
basic

The hydronium ion concentration is found from pH using antilog...

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \Rightarrow-\mathrm{pH}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \Rightarrow 10^{-\mathrm{pH}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

What's $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$if...

$$
\begin{array}{ll}
\mathrm{pH}=3.00 & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3.00}=1.0 \times 10^{-3} \mathrm{M}} \\
\mathrm{pH}=11.0 & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-11.00}=1 \times 10^{-11} \mathrm{M}} \\
\mathrm{pH}=14.2 & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14.2}=6 \times 10^{-15} \mathrm{M}} \\
\mathrm{pH}=1.436 & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-1.436}=0.0366 \mathrm{M}}
\end{array}
$$

Buffers

Buffers are solutions that resist changes in pH
Buffers are solutions that contains significant amounts of a weak acid (HA) and its conjugate base (A^{-})

Buffer or Not?

HF and F^{-}	Yes!
$\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{No!}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Yes!
HCl and Cl^{-}	No
$\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	Yes!
$\mathrm{H}_{2} \mathrm{SO}_{3}$ and HSO_{4}^{-}	No

The weak acid neutralizes added strong base $\left(\mathrm{OH}^{-}\right)$:

$$
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

The conjugate base neutralizes added strong acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$:

$$
\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}
$$

Resistance to pH change increases with increasing amounts of the weak acid and conjugate base

