Outline

- Elements and Compounds
- Naming Ionic Compounds
- Naming Molecular Compounds

Elements and Compounds

Elements are either atomic or molecular...

<u>atomic elements</u> exist as single atoms: noble gases and metals <u>molecular elements</u> exist as two or more atoms:

elements as <u>diatomics</u>: H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2

elements as <u>polyatomics</u>: P_4 and S_8

Elements combine in a definite proportion (by mass) to form compounds...

law of constant proportion

suggests that atoms combine in whole-number ratios

Compounds are represented with <u>chemical formulas</u> elements represented with symbols subscript determines number of atoms group of atoms contained in parentheses Consider...

H_2S	2 H's, 1 S
Cl ₂	2 Cl's
ZnNO ₃	1 Zn, 1 N, 3 O's
$Pb(NO_3)_2$	1 Pb, 2 N's, 6 O's
$(NH_4)_2SO_4$	2 N's, 8 H's, 1 S, 4 O's

Compounds are either molecular or ionic...

molecular compounds form between nonmetal atoms...

the atoms are uncharged

the basic unit is a molecule

ionic compounds form between metal and nonmetal atoms...

then atoms are charged

the basic unit is a <u>formula unit</u>

Ions combine with one another according to the <u>principle of</u> <u>electrical neutrality</u>

Total charge of the cations should equal total charge of the anions

- K⁺, F⁻ KF
- Pb^{2+} , Cl^{-} $PbCl_2$
- Na⁺, S²⁻ Na₂S
- Al³⁺, O²⁻ Al₂O₃
- Pb⁴⁺, O²⁻ PbO₂

Formula mass is the sum of the atomic masses of all atoms present in one formula unit

NaCl22.99 amu + 35.45 amu = 58.44 amuCO212.01 amu + 2(16.00 amu) = 44.01 amuKF39.10 amu + 19.00 amu = 58.10 amuPbCl2207.2 amu + 2(35.45 amu) = 278.1 amuMg(NO3)224.31 amu + 2(14.01 amu) + 6(16.00 amu)

= <u>148.33 amu</u>

Naming Ionic Compounds

Name cation first, anion second

Cation: monatomic metal ions retain their elemental names

- H⁺ hydrogen (ion)
- Be²⁺ beryllium (ion)
- Anion: monatomic nonmetal ions retain the root of their elemental name, ending in *–ide*
- F^- fluoride H^- hydride
- O^{2-} oxide S^{2-} sulfide
- N³⁻ nitride P³⁻ phosphide

<u>Type I Compounds</u>... metals that form only one cation:

Group 1 (1+), Group 2 (2+), Al³⁺, Zn²⁺, Ag⁺

Cations named as elemental name

KCl	K⁺, Cl⁻	potassium chloride
LiH	Li+, H-	lithium hydride
AI_2O_3	Al ³⁺ , O ²⁻	aluminum oxide

The formulas are determined by charge balance...

zinc sulfide	Zn ²⁺ , S ²⁻	ZnS
sodium oxide	Na+, O ²⁻	Na ₂ O
magnesium bromide	Mg²+, Br⁻	MgBr ₂

<u>Type II Compounds</u>... metals that form more than one cation:

All other metals...

Old system:

ion with higher charge has name ending in -ic, ion with lower charge has name ending in -ous

Fe ²⁺	ferrous	Fe ³⁺	ferric
Cu+	cuprous	Cu ²⁺	cupric
Hg_{2}^{2+}	mercurous	Hg ²⁺	mercuric
Hg_2Cl_2	Hg ₂ ²⁺ , Cl ⁻	mercu	rous chloride
HgCl ₂	Hg²+, Cl⁻	mercu	ric chloride

New system:

Cations named as elemental name followed by their charge as a roman numeral in parentheses

CuCl ₂	Cu ²⁺ , Cl ⁻	copper(II) chloride
PbO ₂	Pb ⁴⁺ , O ²⁻	lead(IV) oxide
NiS	Ni ²⁺ , S ²⁻	nickel(II) sulfide

The formulas are determined by charge balance...

mercury(I) iodide	Hg ₂ ²⁺ , I⁻	Hg_2I_2
manganese(II) bromide	Mn²+, Br⁻	$MnBr_2$
chromium(III) oxide	Cr ³⁺ , O ²⁻	Cr_2O_3

Ionic compounds may contain polyatomic ions...

Polyatomic ions containing oxygen are oxyanions Polyatomic ions must be memorized

If an element makes 1 oxyanion, it ends in -ate

CO₃²⁻ carbonate

If an element makes 2 oxyanions, they end in -ate and -ite

NO ₃ ⁻	nitrate	NO_2^-	nitrite
SO4 ²⁻	sulfate	SO3 ²⁻	sulfite
PO ₄ ³⁻	phosphate	PO ₃ ³⁻	phosphite

If an element makes 4 oxyanions, the prefixes *hypo-* (less than) and *per-* (more than) are used in addition to *-ate* and *-ite*

- ClO₄⁻ perchlorate
- ClO_3^- chlorate
- ClO_2^- chlorite
- CIO⁻ hypochlorite

NaClO K ₂ SO ₄	sodium hypocl potassium sulf	
barium hydroxide	Ba ²⁺ , OH ⁻	Ba(OH) ₂
iron(III) nitrate	Fe ³⁺ , NO ₃ ⁻	Fe(NO ₃) ₃

<u>Hydrates</u>

Compounds with water molecules trapped in their crystal

Compound is named, then a prefix for the number of waters, followed by *-hydrate*

1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

 $CuSO_4 \cdot 5 H_2O$ $Hg_2(NO_3)_2 \cdot H_2O$

copper(II) sulfate pentahydrate
mercury(I) nitrate monohydrate

Naming Molecular Compounds

Binary (2 atoms) compounds

First nonmetal: name element, use prefix if more than 1 atom Second nonmetal: name ends in *-ide*, always use prefix

 N_2O

 PI_3

BrCl₃

CO ₂	carbon dioxide
СО	carbon monoxide

CCl₄ carbon tetrachloride

dinitrogen monoxide phosphorus triiodide bromine trichloride

<u>Acids</u>

Arrhenius acid: a compound that loses hydrogen ions in solution

 ${\rm HA} \rightarrow {\rm H^+} \, + \, {\rm A^{\scriptscriptstyle -}}$

Arrhenius base: a compound that loses hydroxide ions in solution

 $\rm BOH \rightarrow B^+ + OH^-$

Acids are named as an ionic compound when out of water

- HCI hydrogen chloride
- HBr hydrogen bromide
- HI hydrogen iodide

Acids are named as an "acid" when dissolved in water...

a) Anion in acid ends in *-ide*:

hydro – root – *ic* acid

b) Anion in acid ends in *-ate*:

root – *ic* acid

c) Anion in acid ends in -ite:

root – ous acid

Compound	Anion	Acid in water
HBr	bromide	hydrobromic acid
H ₂ S	sulfide	hydrosulfuric acid
HNO ₃	nitrate	nitric acid
HNO ₂	nitrite	nitrous acid
H_2SO_4	sulfate	sulfuric acid
HCIO ₄	perchlorate	perchloric acid
HCIO	hypochlorite	hypochlorous acid