Outline

- Properties of Gases
- Gas Laws
- Gas Mixtures
- Kinetic Molecular Theory
- Real Gases

Properties of Gases

Gases have indefinite shape and volume, can be highly compressed

Gas pressure results from collisions of particles with walls of a container

Atmospheric pressure is measured with a barometer

Pressure of atmosphere can support a 760 mm column of Hg

Standard atmospheric pressure is $760 \mathrm{~mm} \mathrm{Hg} . .$.
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr $=101.325 \mathrm{kPa}$

Other units for gases...
n moles (mol)

V volume (L)

T temperature (K)

Standard temperature is $273.15 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$

Gas pressure is measured with a manometer

Hg

$$
\begin{aligned}
& P_{\text {gas }}=78 \mathrm{~mm} \mathrm{Hg} \\
& P_{\text {gas }}=0.10 \mathrm{~atm}
\end{aligned}
$$

756 mm Hg

$P_{\text {gas }}=733 \mathrm{~mm} \mathrm{Hg}$
$P_{\text {gas }}=0.964 \mathrm{~atm}$

Gas Laws

Avogadro's Law
For constant T and P, V is proportional to n

$$
\mathrm{V} \propto \mathrm{n} \quad \Rightarrow \quad \frac{\mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}
$$

Boyle's Law
For constant n and T, V is inversely proportional to P

$$
\mathrm{V} \propto \frac{1}{P} \quad \Rightarrow \quad P_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
$$

A sample of gas has $V=268 \mathrm{~mL}$ at 2.1 atm. What's V at 1.7 atm?

$$
P_{1} V_{1}=P_{2} V_{2} \quad \Rightarrow \quad V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{(2.1 \mathrm{~atm})(268 \mathrm{~mL})}{(1.7 \mathrm{~atm})}=330 \mathrm{~mL}
$$

Charles' Law
For constant n and P , volume is proportional to T

$$
\mathrm{V} \propto \mathrm{~T} \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

Gay-Lussac's Law
For constant n and V , pressure is proportional to T

$$
\mathrm{P} \propto \mathrm{~T} \Rightarrow \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

A sample of gas has $V=3.68 \mathrm{~L}$ at 201 K . What's T if $\mathrm{V}=9.67 \mathrm{~L}$?

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \Rightarrow T_{2}=\frac{V_{2} T_{1}}{V_{1}}=\frac{(9.67 \mathrm{~L})(201 \mathrm{~K})}{(3.68 \mathrm{~L})}=528 \mathrm{~K}
$$

"Char-Boyled" Law
Combination of Charles' Law and Boyle's Law

$$
\mathrm{V} \propto \frac{\mathrm{~T}}{\mathrm{P}} \Rightarrow \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

Ideal Gas Law is the combination of all gas laws...

$$
V \propto \frac{n T}{P} \quad \Rightarrow \quad P V=n R T
$$

R is the universal gas constant...

$$
\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

85.0 mL of a gas is collected at $17^{\circ} \mathrm{C}$ and 700. torr. What will its volume be at STP?
$85.0 \mathrm{~mL} \Rightarrow 0.0850 \mathrm{~L}$
$17{ }^{\circ} \mathrm{C} \Rightarrow 290.15 \mathrm{~K}$
700. torr $\Rightarrow 0.92105 \mathrm{~atm}$

STP $\Rightarrow \mathrm{T}=273.15 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \Rightarrow \frac{(0.92105 \mathrm{~atm})(0.0850 \mathrm{~L})}{290.15 \mathrm{~K}}=\frac{(1.00 \mathrm{~atm})\left(\mathrm{V}_{2}\right)}{273.15 \mathrm{~K}} \\
& \mathrm{~V}_{2}=0.0737 \mathrm{~L}=73.7 \mathrm{~mL}
\end{aligned}
$$

How many moles of a gas are in a flask with a capacity of $500 . \mathrm{mL}$, when the pressure is 570 . torr at $22^{\circ} \mathrm{C}$?
500. mL $\Rightarrow 0.500 \mathrm{~L}$
$22^{\circ} \mathrm{C} \Rightarrow 295.15 \mathrm{~K}$
570. torr $\Rightarrow 0.750 \mathrm{~atm}$
$\mathrm{PV}=\mathrm{nRT}$
$(0.750 \mathrm{~atm})(0.500 \mathrm{~L})=\mathrm{n}\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(295.15 \mathrm{~K})$
$\mathrm{n}=0.0155 \mathrm{~mol}$

$$
P V=n R T \Rightarrow P V=\left(\frac{m}{M M}\right) R T \quad \Rightarrow \quad \frac{m}{V}=\frac{P(M M)}{R T}
$$

What is the pressure of oxygen gas if 0.200 g is confined in a 1.00 L flask at $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& P(1.00 \mathrm{~L})=\left(\frac{0.200 \mathrm{~g}}{32.00 \mathrm{~g} / \mathrm{mol}}\right)\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298.15 \mathrm{~K}) \\
& \Rightarrow \quad \mathrm{P}=\underline{0.153 \mathrm{~atm}}
\end{aligned}
$$

What is the density of nitrogen gas at $20 .{ }^{\circ} \mathrm{C}$ and 1.00 atm pressure?

$$
\frac{\mathrm{m}}{\mathrm{~V}}=\frac{\mathrm{P}(\mathrm{MM})}{\mathrm{RT}}=\frac{(1.00 \mathrm{~atm})\left(28.02 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{\left(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(293.15 \mathrm{~K})}=1.16 \mathrm{~g} \mathrm{~L}^{-1}
$$

The volume of 1 mole of a gas at STP is 22.41 L
...22.41 $\mathrm{L} \mathrm{mol}^{-1}$ is the Standard Molar Volume
...is used to convert between liters and moles (at STP)!

How many liters of oxygen are produced at STP when 2.5 g of potassium chlorate decompose?

$$
\begin{gathered}
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \\
2.5 \mathrm{~g} \mathrm{KClO}_{3} \times \frac{1 \mathrm{~mol}}{122.55 \mathrm{~g}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{KClO}_{3}} \times \frac{22.41 \mathrm{~L}}{1 \mathrm{~mol}}=\underline{0.69 \mathrm{~L}}
\end{gathered}
$$

Gas Mixtures

Partial Pressure...

The pressure exerted by a single gas in a mixture of gases

The total pressure of a gas mixture equals the sum of the partial pressures

$$
P_{\text {total }}=P_{a}+P_{b}+P_{c}+\ldots \quad \text { (Dalton's Law) }
$$

Partial pressures are proportional to number of moles of gas in a mixture

$$
\mathrm{p}=\chi \mathrm{P}_{\text {total }}
$$

Mole Fraction (χ) is the moles of one gas in a mixture divided by the total moles of gas

At $27^{\circ} \mathrm{C}$ a 2.00 L flask has 4.40 g of CO_{2} and $1.00 \mathrm{~g} \mathrm{~N}_{2}$. Find the partial pressures and total pressure.
$4.40 \mathrm{~g} \mathrm{CO}_{2} \Rightarrow 0.100 \mathrm{~mol} \mathrm{CO}_{2}$ and $1.00 \mathrm{~g} \mathrm{~N}_{2} \Rightarrow 0.0357 \mathrm{~mol} \mathrm{~N}_{2}$

$$
\begin{aligned}
& \chi_{\mathrm{CO}_{2}}=\frac{0.100 \mathrm{~mol}}{0.136 \mathrm{~mol}}=0.735 \text { and } \chi_{\mathrm{N}_{2}}=\frac{0.0357 \mathrm{~mol}}{0.136 \mathrm{~mol}}=0.263 \\
& \left.\mathrm{P}_{\text {total }}=\frac{(0.136 \mathrm{~mol})(0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}}{}{ }^{-1} \mathrm{~K}^{-1}\right)(300.15 \mathrm{~K}) \\
& 2.00 \mathrm{~L}
\end{aligned} \underline{1.67 \mathrm{~atm}} 0 \text {. }
$$

Kinetic Molecular Theory

Simple model to explain properties of an ideal gas

Postulates...

1. Volume of particles is negligible
2. Particles are in constant motion
3. Average kinetic energy of particles is proportional to temperature
4. Particles do not exert forces on one another

Pressure results from collisions between molecules and walls of container...

Pressure increases with increasing collision frequency!

1. Boyle's Law ($\mathrm{V} \propto \mathrm{P}^{-1}$)
dec. volume \rightarrow inc. collisions \rightarrow inc. pressure
2. Gay-Lussac's Law $(P \propto T)$
inc. temp \rightarrow inc. velocity/collisions \rightarrow inc. pressure
3. Charles' Law ($\mathrm{V} \propto \mathrm{T}$)
inc. temp \rightarrow inc. velocity/collisions \rightarrow inc. volume

Kinetic Energy (E_{K}) is the energy of motion...

$$
E_{k}=\frac{1}{2} m u^{2} \quad(m=\text { mass } \text { and } u=\text { velocity })
$$

Mathematically, for 1 mol of gas...

$$
E_{K}=N_{A}\left(\frac{1}{2} m \overline{u^{2}}\right)=\frac{3}{2} R T
$$

Temperature is a measure of the average kinetic energy of molecules

Molecules at the same T have the same average E_{K} !

$$
\begin{aligned}
& \overline{\mathrm{u}^{2}}=\frac{3 \mathrm{RT}}{M} \\
& \mathrm{u}_{\mathrm{rms}}=\sqrt{\overline{\mathrm{u}^{2}}}=\sqrt{\frac{3 \mathrm{RT}}{M}}
\end{aligned}
$$

Root-Mean-Square-Velocity ($\mathrm{u}_{\mathrm{rms}}$) is the average velocity of the molecules
$\mathrm{u}_{\mathrm{rms}}$ and M are inversely related
For same T, the bigger the molecules, the smaller their velocities

R is $8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ and M is in $\mathrm{kg} / \mathrm{mol}$

The $u_{r m s}$ is just the "average velocity" of a group of molecules at a specific temperature...

Number of
Molecules
These curves represent the velocities of molecules at a given T, and are called Maxwell-Boltzmann Distributions

Find the $\mathrm{u}_{\mathrm{rms}}$ of oxygen molecules at $25^{\circ} \mathrm{C}$.

$$
u_{\text {rms }}=\sqrt{\frac{3 \mathrm{RT}}{M}}=\sqrt{\frac{3\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298.15 \mathrm{~K})}{0.03200 \mathrm{~kg} \mathrm{~mol}^{-1}}}=482 \mathrm{~m} \mathrm{~s}^{-1}
$$

Determine the molar mass of molecules with a root-mean-squarevelocity of $312 \mathrm{~m} / \mathrm{s}$ at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{M}} \Rightarrow \quad M=\frac{3 \mathrm{RT}}{\mathrm{u}_{\mathrm{rms}}^{2}} \\
& M=\frac{3\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298.15 \mathrm{~K})}{\left(312 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}=0.0764 \mathrm{~kg} / \mathrm{mol}=76.4 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Effusion is the movement of gaseous molecules into a chamber through a pinhole...

Graham's Law of Effusion...
rates of effusion are inversely proportional to square root of molar mass

$$
\frac{\text { rate }_{1}}{\text { rate }_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

Diffusion is the migration of molecules as a result of random molecular motion...

Real Gases

Gases that conform to Kinetic Molecular Theory are ideal gases

Real gases deviate from ideal behavior because...

1. molecules attract each other (reducing pressure)
2. molecules take up space (reducing volume)

Deviation from ideal behavior is reduced for...

1. Iow pressures... attractive forces decrease with increasing distance
2. high temperatures... attractive forces more easily overcome with higher speeds

The van der Waals equation corrects for these deviations!
van der Waals Equation:

$$
\left[P_{o b s}+a\left(\frac{n}{V}\right)^{2}\right] \times(V-n b)=n R T
$$

" a " is a correction factor for molecular attraction
" b " is a correction for molecular size

Find the pressure of 1.000 moles of ammonia at $0.00^{\circ} \mathrm{C}$ and 22.41 L. For ammonia, $a=4.170 \mathrm{~L}^{2} \mathrm{~atm} / \mathrm{mol}^{2}$ and $\mathrm{b}=0.03707 \mathrm{~L} /$ mol. What is the percent deviation from ideality?

$$
\left[P_{o b s}+a\left(\frac{n}{V}\right)^{2}\right] \times(V-n b)=n R T \quad \Rightarrow \quad P_{o b s}=\frac{n R T}{(V-n b)}-a\left(\frac{n}{V}\right)^{2}
$$

$$
P_{\text {obs }}=\left[\frac{(1.000)(0.08206)(273.15 \mathrm{~K})}{(22.41-1.000 \times 0.03707)}-4.170\left(\frac{1.000}{22.41}\right)^{2}\right] \mathrm{atm}
$$

$$
\mathrm{P}_{\mathrm{obs}}=\underline{0.994 \mathrm{~atm}}
$$

$$
\% \text { deviation }=\frac{0.994 \mathrm{~atm}-1.000 \mathrm{~atm} \mid}{1.000 \mathrm{~atm}} \times 100=\underline{0.600 \%}
$$

