Outline

- Moles and Molar Mass
- Percent Composition
- Empirical Formula

Mole and Molar Mass

Number of atoms can be counted by weighing...
$1{ }^{12} \mathrm{C}$ atom weighs 12 amu (exact)

How many in 48 amu?

$$
48 \mathrm{amu} \times \frac{1 \text { atom }}{12.00 \mathrm{amu}}=4.0 \text { atoms }
$$

How many in 12.00 g ?

$$
12.00 \mathrm{~g} \mathrm{C} \mathrm{x} \frac{1 \mathrm{amu}}{1.6606 \times 10^{24} \mathrm{~g}} \times \frac{1 \text { atom }}{12 \mathrm{amu}}=\underline{6.022 \times 10^{23} \text { atoms }}
$$

The number of ${ }^{12} \mathrm{C}$ atoms in 12 g of ${ }^{12} \mathrm{C}$ is called a mole (mol):

$$
1 \mathrm{~mol}=6.022 \times 10^{23} \text { things (Avogadro's number) }
$$

1 mole of any element is equal to the element's atomic mass in grams

1 mol of $\mathrm{Cu}=63.55 \mathrm{~g} \mathrm{Cu}$
1 mol of $\mathrm{Na}=22.99 \mathrm{~g} \mathrm{Na}$
$131.29 \mathrm{~g} \mathrm{Xe}=1 \mathrm{~mol}$ of Xe

The mass of 1 mol of a substance is its molar mass

How many moles are in 2.25 g of Li ?
$2.25 \mathrm{~g} \mathrm{Li} \times \frac{1 \mathrm{~mol} \mathrm{Li}}{6.941 \mathrm{~g} \mathrm{Li}}=\underline{0.324 \mathrm{~mol} \mathrm{Li}}$
How many atoms are in 3.5 g He ?
$3.5 \mathrm{~g} \mathrm{He} \times \frac{1 \mathrm{~mol} \mathrm{He}}{4.003 \mathrm{~g} \mathrm{He}} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=\underline{5.3 \times 10^{23} \mathrm{He} \text { atoms }}$

What's the mass (in g) of 2.00×10^{22} Ca atoms?
2.00×10^{22} atoms $\times \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atoms }} \times \frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol}}=1.33 \mathrm{~g} \mathrm{Ca}$

A compound's molar mass is it's formula mass in units of grams
1 mol of $\mathrm{NaCl}=58.44 \mathrm{~g} \mathrm{NaCl}$
$44.01 \mathrm{~g} \mathrm{CO}_{2}=1 \mathrm{~mol}$ of CO_{2}
How many moles are in 5.6 g of CF_{4} ?
$5.6 \mathrm{~g} \mathrm{CF}_{4} \times \frac{1 \mathrm{~mol}}{88.01 \mathrm{~g}}=0.0636 \mathrm{~mol} \mathrm{CF}_{4}=\underline{0.064 \mathrm{~mol} \mathrm{CF}_{4}}$
How many molecules in 5.6 g of CF_{4} ?
$0.0636 \mathrm{~mol} \mathrm{CF}_{4} \times \frac{6.022 \times 10^{23} \mathrm{molec}}{1 \mathrm{~mol}}=\underline{3.8 \times 10^{22} \mathrm{molec} \mathrm{CF}_{4}}$

Percent Composition

Percent composition is the percent by mass of each element present in a compound

$$
\% \text { element }=\frac{\text { mass of element in formula unit }}{\text { formula mass }} \times 100
$$

Calculate the \% comp of CF_{4}

$$
\begin{aligned}
& \% \mathrm{C}=\frac{12.01 \mathrm{amu}}{88.01 \mathrm{amu}} \times 100=13.65 \% \mathrm{C} \\
& \% \mathrm{~F}=\frac{4(19.00 \mathrm{amu})}{88.01 \mathrm{amu}} \times 100=86.35 \% \mathrm{~F}
\end{aligned}
$$

Calculate the \% comp of water in $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
Formula masses:
$(24.31 \mathrm{amu})+(32.07 \mathrm{amu})+11(16.00 \mathrm{amu})+14(1.008 \mathrm{amu})$

$2(1.008 \mathrm{amu})+(16.00 \mathrm{amu})=18.02 \mathrm{amu}$ for $\mathrm{H}_{2} \underline{O}$
Percent Composition:
$\% \mathrm{H}_{2} \mathrm{O}=\frac{7(18.02 \mathrm{amu})}{246.49 \mathrm{amu}} \times 100=51.17 \% \mathrm{H}_{2} \mathrm{O}$

From experimental data...

$$
\% \text { element }=\frac{\text { mass of element }}{\text { mass of compound }} \times 100
$$

What's \% comp if 0.500 g metal combine with 0.400 g O ?
compound mass $=0.500 \mathrm{~g}+0.400 \mathrm{~g}=0.900 \mathrm{~g}$

$$
\% \text { metal }=\frac{0.500 \mathrm{~g}}{0.900 \mathrm{~g}} \times 100=55.56 \% \text { metal }
$$

$$
\% \mathrm{O}=\frac{0.400 \mathrm{~g}}{0.900 \mathrm{~g}} \times 100=44.44 \% \mathrm{O}
$$

Empirical Formula

Empirical formula is the smallest whole number ratio of atoms in a compound...
molecular formula $=($ empirical formula $) \times n$

glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$	$(x 6)$
acetic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{2} \mathrm{O}$	$(x 2)$
formaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{O}$	$(x 1)$

formulas for all ionic compounds are empirical formulas
found from percent composition of a compound...

To determine empirical formula....

1. Convert mass percents to grams (Assume 100 g !)
2. Convert grams to moles
3. Divide by the smallest number of moles
4. Multiply values by integer to obtain whole numbers

Determine empirical formula for a compound that is 32.4% sodium, 22.6% sulfur, and 45.1% oxygen.
$32.4 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol}}{22.99 \mathrm{~g}}=1.4 \underline{0} 9 \mathrm{~mol} \mathrm{Na} \quad \frac{1.4 \underline{9} 9 \mathrm{~mol} \mathrm{Na}}{0.7047 \mathrm{~mol}}=2.00 \mathrm{Na}$
$22.6 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol}}{32.07 \mathrm{~g}}=0.7047 \mathrm{~mol} \mathrm{~S} \quad \frac{0.7047 \mathrm{~mol} \mathrm{~S}}{0.7047 \mathrm{~mol}}=1.00 \mathrm{~S}$
$45.1 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=2.818 \mathrm{~mol} \mathrm{O} \quad \frac{2.818 \mathrm{~mol} \mathrm{O}}{0.7047 \mathrm{~mol}}=4.00 \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$

Determine empirical formula for a compound that is 26.6% potassium, 35.4% chromium, and 38.1% oxygen.
$26.6 \mathrm{~g} \mathrm{~K} \times \frac{1 \mathrm{~mol}}{39.10 \mathrm{~g}}=0.6803 \mathrm{~mol} \mathrm{~K} \quad \frac{0.6803 \mathrm{~mol} \mathrm{~K}}{0.6803 \mathrm{~mol}}=1.00 \mathrm{~K}$
$35.4 \mathrm{~g} \mathrm{Cr} \times \frac{1 \mathrm{~mol}}{52.00 \mathrm{~g}}=0.68 \underline{0} 7 \mathrm{~mol} \mathrm{Cr} \quad \frac{0.68 \underline{0} 7 \mathrm{~mol} \mathrm{Cr}}{0.68 \underline{0} 3 \mathrm{~mol}}=1.00 \mathrm{Cr}$
$38.1 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=2.381 \mathrm{~mol} \mathrm{O} \quad \frac{2.3 \underline{8} 1 \mathrm{~mol} \mathrm{O}}{0.68 \underline{0} 3 \mathrm{~mol}}=3.50 \mathrm{O}$
$\mathrm{KCrO}_{3.5} \Rightarrow \underline{\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}$

Determine molecular formula for a compound that is 30.4\% nitrogen and 69.6% oxygen, and has a molecular mass of 92.0 amu

$$
\begin{array}{ll}
30.4 \mathrm{~g} \mathrm{~N} \mathrm{x} & \frac{1 \mathrm{~mol}}{14.01 \mathrm{~g}}=2.169 \mathrm{~mol} \mathrm{~N}
\end{array} \frac{\frac{2.1 \underline{6} 9 \mathrm{~mol} \mathrm{~N}}{2.1 \underline{6} 9 \mathrm{~mol}}=1.00 \mathrm{~N}}{69.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=4.350 \mathrm{~mol} \mathrm{O}} \quad \frac{4.350 \mathrm{~mol} \mathrm{O}}{2.1 \underline{6} 9 \mathrm{~mol}}=2.01 \mathrm{O}
$$

$\mathrm{NO}_{2} \Rightarrow 1(14.01 \mathrm{amu})+2(16.00 \mathrm{amu})=46.01 \mathrm{amu}$
$92.0 \mathrm{amu} \div 46.01 \mathrm{amu}=2.00 \Rightarrow 2 \times \mathrm{NO}_{2} \Rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$

Determine molecular formula for a compound that is 56.4\% phosphorus and 43.6\% oxygen, and has a molecular mass of 220.0 amu

$$
\begin{array}{ll}
56.4 \mathrm{~g} \mathrm{P} \times \frac{1 \mathrm{~mol}}{30.97 \mathrm{~g}}=1.821 \mathrm{~mol} \mathrm{P} & \frac{1.821 \mathrm{~mol} \mathrm{P}}{1.821 \mathrm{~mol}}=1.00 \mathrm{P} \\
43.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=2.725 \mathrm{~mol} \mathrm{O} & \frac{2.725 \mathrm{~mol} \mathrm{O}}{1.821 \mathrm{~mol}}=1.50 \mathrm{O}
\end{array}
$$

$\mathrm{PO}_{1.5} \Rightarrow \mathrm{P}_{2} \mathrm{O}_{3} \Rightarrow 2(30.97 \mathrm{amu})+3(16.00 \mathrm{amu})=109.94 \mathrm{amu}$
$220.0 \mathrm{amu} \div 109.94 \mathrm{amu}=2.00 \Rightarrow 2 \times \mathrm{P}_{2} \mathrm{O}_{3} \Rightarrow \underline{\mathrm{P}_{4} \mathrm{O}_{6}}$

