Outline

- Chemical Equations
- Precipitation Reactions
- Acid-Base and Gas Evolution Reactions
- Oxidation-Reduction Reactions
- Classification of Reactions

Chemical Equations

Chemical reactions are represented with chemical equations

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

reactants products
Chemical equations give important information about reactants and products:

1. relative amounts
2. physical states (phases)

Phases are indicated in chemical equations:

solid	(s)	liquid
gas	(g)	aqueous

Chemical equations must have mass and charge balance... total number and type of atoms don't change total charge of reactants same as products

Chemical equations are balanced by...
adjusting coefficients in front of reactants and products
"inspection"

1. start with most complicated formula
2. start with species that appears once on each side
3. use simplest whole number coefficients
$3 \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{Al}(\mathrm{s}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{Mn}(\mathrm{s})$
$\mathrm{PCl}_{5}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+5 \mathrm{HCl}(\mathrm{aq})$
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$

Every 2 molecules of $\mathrm{H}_{2} \mathrm{O}_{2}$ produce...
2 molecules of $\mathrm{H}_{2} \mathrm{O}$ and 1 molecule of O_{2}
Every 2 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ produce...
2 moles of $\mathrm{H}_{2} \mathrm{O}$ and 1 mole of O_{2}

Precipitation Reactions

Some substances dissolve in water to produce homogeneous mixture: aqueous solution

Ionic compounds (salts) dissociate into ions when dissolved...

soluble salts:	dissolve
insoluble salts:	do not dissolve

Solubility of salts predicted from solubility rules...

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	soluble	$\mathrm{NH}_{4}{ }^{+}$salts soluble!
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	soluble	NO_{3}^{-}salts soluble!
$\mathrm{Al}(\mathrm{OH})_{3}$	insoluble	OH^{-}insoluble, except for...?
BaSO_{4}	insoluble	$\mathrm{SO}_{4}{ }^{2-}$ soluble, except for...?

Ions in solution can react to form insoluble substance (precipitate)
Reactions that form precipitates are precipitation reactions
Write equations for reactions between:
$\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}$
$2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq})$
$\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KC}_{3} \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{PbSO}_{4}(\mathrm{~s})$
$2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{LiNO}_{3}(\mathrm{aq})$

Description of chemical reaction with...
formula equation: all reactants and products, no individual ions

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

total ionic equation: all reactants and products are given as ions
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}-(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
net ionic equation: includes only those species involved in reaction

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

Ions present that do not participate in reaction are spectator ions

$$
\mathrm{NO}_{3}{ }^{-} \text {and } \mathrm{Na}^{+}
$$

Write net-ionic equations for:
$\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
nie: $\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})$
$2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{LiNO}_{3}(\mathrm{aq})$

$$
\text { nie: } \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})
$$

Acid-Base and Gas Evolution Reactions

Acids react with bases by transferring hydrogen ions (H^{+})

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Acid-base reactions are termed neutralization reactions... the reactions produce "hot salty water"!

Predict the products...

$$
\begin{aligned}
& \mathrm{HBr}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow \mathrm{LiBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{aligned}
$$

The net-ionic equation for an acid-base reaction is...

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Some products in aqueous reactions are gaseous...

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{SO}_{2}(\mathrm{~g}) \\
& \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

Oxidation-Reduction Reactions

Reactions involving the transfer of electrons are oxidationreduction reactions (redox reactions)
a substance reacts with oxygen $\left(\mathrm{O}_{2}\right)$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

a metal reacts with a nonmetal

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

a substance transfers electrons to another

$$
\mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

Classification of Reactions

Chemical reactions can be classified into different types...
combination:
decomposition:

$$
A+B \rightarrow A B
$$

complex substance decomposes to form simpler substances
$A B \rightarrow A+B$
single-displacement: one element displaces another in a compound

$$
A+B X \rightarrow B+A X
$$

double-displacement: two elements (groups) displace one another

$$
A X+B Y \quad \rightarrow \quad A Y+B X
$$

Classify the reaction type...
$\mathrm{Cu}(\mathrm{s})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
$\mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}$
$\mathrm{KHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{Mg}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgF}_{2}(\mathrm{~s})$
$\mathrm{BaCl}_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+\mathrm{NaCl}(\mathrm{aq})$

