Outline

- Chemical Equations
- Precipitation Reactions
- Acid-Base and Gas Evolution Reactions
- Oxidation-Reduction Reactions
- Classification of Reactions

Chemical Equations

Chemical reactions are represented with chemical equations

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ reactants products

Chemical equations give important information about reactants and products:

- 1. relative amounts
- 2. physical states (phases)

Phases are indicated in chemical equations:

solid	(s)	liquid	()
gas	(g)	aqueous	(aq)

Chemical equations must have <u>mass and charge balance</u>... total number and type of atoms don't change total charge of reactants same as products

Chemical equations are balanced by...

adjusting coefficients in front of reactants and products

"inspection"

- 1. start with most complicated formula
- 2. start with species that appears once on each side
- 3. use simplest whole number coefficients

 $3MnO_2(s) + 4Al(s) \rightarrow 2Al_2O_3(s) + 3Mn(s)$

 $PCI_5(g) + 4H_2O(I) \rightarrow H_3PO_4(aq) + 5HCI(aq)$

 $2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g)$

Every 2 molecules of H_2O_2 produce...

2 molecules of H_2O and 1 molecule of O_2

Every 2 moles of H_2O_2 produce...

2 moles of H_2O and 1 mole of O_2

Precipitation Reactions

Some substances dissolve in water to produce homogeneous mixture: <u>aqueous solution</u>

Ionic compounds (salts) dissociate into ions when dissolved...

soluble salts:	dissolve
insoluble salts:	do not dissolve

Solubility of salts predicted from solubility rules...

$(NH_4)_2CO_3$	soluble	NH ₄ ⁺ salts soluble!
$Zn(NO_3)_2$	soluble	NO ₃ - salts soluble!
AI(OH) ₃	insoluble	OH ⁻ insoluble, except for?
BaSO ₄	insoluble	SO_4^{2-} soluble, except for?

Ions in solution can react to form insoluble substance (precipitate) Reactions that form precipitates are <u>precipitation reactions</u> Write equations for reactions between:

$$\begin{split} &\text{NaCl}(aq) + \text{AgNO}_3(aq) \rightarrow \text{AgCl}(s) + \text{NaNO}_3 \\ &2\text{KCl}(aq) + \text{Na}_2\text{CO}_3(aq) \rightarrow \text{K}_2\text{CO}_3(aq) + 2\text{NaCl}(aq) \\ &\text{K}_2\text{SO}_4(aq) + \text{Pb}(\text{C}_2\text{H}_3\text{O}_2)_2(aq) \rightarrow 2\text{KC}_3\text{H}_2\text{O}_2(aq) + \text{PbSO}_4(s) \\ &2\text{LiOH}(aq) + \text{Pb}(\text{NO}_3)_2(aq) \rightarrow \text{Pb}(\text{OH})_2(s) + 2\text{LiNO}_3(aq) \end{split}$$

Description of chemical reaction with...

<u>formula equation</u>: all reactants and products, no individual ions $AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ <u>total ionic equation</u>: all reactants and products are given as ions $Ag^+(aq)+NO_3^-(aq)+Na^+(aq)+Cl^-(aq) \rightarrow AgCl(s)+Na^+(aq)+NO_3^-(aq)$

net ionic equation: includes only those species involved in reaction

 $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

Ions present that do not participate in reaction are <u>spectator ions</u>

 NO_3^- and Na^+

Write net-ionic equations for:

 $K_2SO_4(aq) + Pb(C_2H_3O_2)_2(aq) \rightarrow PbSO_4(s) + 2KC_2H_3O_2(aq)$

nie: $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$

 $2\text{LiOH}(aq) + Pb(NO_3)_2(aq) \rightarrow Pb(OH)_2(s) + 2LiNO_3(aq)$

nie: $Pb^{2+}(aq) + 2OH^{-}(aq) \rightarrow Pb(OH)_{2}(s)$

Acid-Base and Gas Evolution Reactions

Acids react with bases by transferring hydrogen ions (H⁺) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$ Acid-base reactions are termed <u>neutralization reactions</u>... the reactions produce "hot salty water"!

Predict the products...

 $HBr(aq) + LiOH(aq) \rightarrow LiBr(aq) + H_2O(I)$

 $H_2SO_4(aq) + Ba(OH)_2 \rightarrow BaSO_4(s) + 2H_2O(I)$

The net-ionic equation for an acid-base reaction is...

```
H^+(aq) + OH^-(aq) \rightarrow H_2O(I)
```

Some products in aqueous reactions are gaseous...

 $H_{2}S(aq) \rightarrow H_{2}S(g)$ $H_{2}CO_{3}(aq) \rightarrow H_{2}O(l) + CO_{2}(g)$ $H_{2}SO_{3}(aq) \rightarrow H_{2}O(l) + SO_{2}(g)$ $NH_{4}OH(aq) \rightarrow H_{2}O(l) + NH_{3}(g)$

Oxidation-Reduction Reactions

Reactions involving the transfer of electrons are oxidationreduction reactions (redox reactions)

a substance reacts with oxygen (O_2)

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$

a metal reacts with a nonmetal

$$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$$

a substance transfers electrons to another

 $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$

Classification of Reactions

Chemical reactions can be classified into different types...

combination:	simpler substances combine to form complex substance		
	$A + B \rightarrow AB$		
decomposition:	complex substance decomposes to form simpler substances		
	$AB \rightarrow A + B$		
single-displacement:	one element displaces another in a compound		
	$A + BX \rightarrow B + AX$		

double-displacement: two elements (groups) displace one another

```
AX + BY \rightarrow AY + BX
```

Classify the reaction type...