## Outline

- Nature of Energy
- First Law Calculations
- Enthalpy and Calorimetry
- Hess' Law
- Enthalpy of Formation


## Nature of Energy

Thermodynamics is the study of energy and its interconversions

Energy is the capacity to do work or to transfer heat
Potential Energy is the energy of position...
Kinetic Energy is the energy of motion...

Internal Energy (E) is the kinetic and potential energies of particles in the system

The system is the part of the universe we want to focus on

The surroundings is the rest of the universe

Work is defined as force acting over a distance
It is a process by which energy is transferred from one object to another

Heat is the transfer of energy between two objects due to a temperature difference

Temperature is a measure of the random motion of the molecules in an object

First Law of Thermodynamics
The energy of the universe is constant, and a system's internal energy can only change by work or heat transfer
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$\Delta \mathrm{E} \quad$ change in internal energy
$+q$ heat transferred to a system
+w work done on a system

Calculate $\Delta \mathrm{E}$ for a system that gains 18.6 J of heat and does 1.36 J of work on the surroundings.

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=18.6 \mathrm{~J}-1.36 \mathrm{~J}=17.24 \mathrm{~J}=17.2 \mathrm{~J}
$$

What if system lost 5.6 kJ of heat and did 467 J of work on the surroundings?

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=-5.6 \mathrm{~kJ}-0.467 \mathrm{~kJ}=-6.067 \mathrm{~kJ}=\underline{-6.1 \mathrm{~kJ}}
$$

The change in internal energy of a system is a state function

State Function
A property whose numerical value is independent of the pathway
$\Delta \mathrm{E}$ the same no matter the pathway

Path Function
A property whose numerical value is dependent on the pathway
q depends on the pathway
w depends on the pathway

## First Law Calculations

1. Calculating Work

Reactions with gaseous products do work by expanding against an external pressure...
work $=$ force $\times$ distance

$$
\mathrm{w}=\mathrm{F} \times \Delta \mathrm{d} \quad\left(\Delta \mathrm{~d}=\mathrm{d}_{\mathrm{f}}-\mathrm{d}_{\mathrm{i}}\right)
$$

pressure $=$ force $\div$ area

$$
P=F \div A \quad \Rightarrow \quad F=P \times A
$$

The work due to an expanding gas is...

$$
\begin{aligned}
& \mathrm{W}=-\mathrm{P} \times \mathrm{A} \times \Delta \mathrm{d} \\
& \mathrm{~W}=-\mathrm{P} \times \Delta \mathrm{V} \quad\left(\Delta \mathrm{~V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)
\end{aligned}
$$



When a gas expands from 42 L to 56 L against a pressure of 18 atm, how much work has it done?

$$
\begin{aligned}
& \mathrm{w}=-\mathrm{P} \Delta \mathrm{~V}=-(18 \mathrm{~atm})(14 \mathrm{~L})=-250 \mathrm{~L} \text { atm } \\
& \mathrm{w}=-250 \mathrm{~L} \text { atm } \times \frac{101.3 \mathrm{~J}}{1 \mathrm{Latm}}=-2.5 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

A balloon is expanded from $3.00 \times 10^{6} \mathrm{~L}$ to $3.50 \times 10^{6} \mathrm{~L}$ against a pressure of 1.00 atm by adding $1.1 \times 10^{8} \mathrm{~J}$ through heat transfer. Calculate $\Delta \mathrm{E}$.

$$
\begin{aligned}
\Delta \mathrm{E} & =\mathrm{q}+\mathrm{w} \\
\mathrm{q} & =+1.1 \times 10^{8} \mathrm{~J} \\
\mathrm{w} & =-\mathrm{P} \Delta \mathrm{~V}=-\mathrm{P}\left(\mathrm{~V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) \\
& =-(1.00 \mathrm{~atm})\left(3.50 \times 10^{6} \mathrm{~L}-3.00 \times 10^{6} \mathrm{~L}\right)=-5.00 \times 10^{5} \mathrm{~L} \mathrm{~atm} \\
& =-5.00 \times 10^{5} \mathrm{~L} \mathrm{~atm} \times \frac{101.3 \mathrm{~J}}{1 \mathrm{~L} \mathrm{~atm}}=-5.07 \times 10^{7} \mathrm{~J}
\end{aligned}
$$

$$
\Delta \mathrm{E}=+1.1 \times 10^{8} \mathrm{~J}-5.07 \times 10^{7} \mathrm{~J}=+5.9 \times 10^{7} \mathrm{~J}=+6 \times 10^{7} \mathrm{~J}
$$

2. Calculating Heat

Exothermic processes are those where heat transfers out of the system... the surroundings heat up ( $q$ is -)

Endothermic processes are those where heat transfers into the system... the surroundings cool off (q is +)

Specific Heat Capacity
The amount of heat needed to raise the temperature of 1 g of a substance $1^{\circ} \mathrm{C}$ at constant pressure
heat transferred $=\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$
1.00 mole of gas is in a 2.50 L container at $20.0^{\circ} \mathrm{C}$. The temperature increases to $35.0^{\circ} \mathrm{C}$ and the container expands to 3.75 L against a constant pressure of 1.00 atm . The molar heat capacity of the gas is $10 \mathrm{~J} / \mathrm{mol}^{\circ} \mathrm{C}$. Find $\mathrm{q}, \mathrm{w}$, and $\Delta \mathrm{E}$.

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{p}}=\mathrm{n} \overline{\mathrm{C}} \Delta \mathrm{~T}=(1.00 \mathrm{~mol})\left(10.0 \mathrm{~J} / \mathrm{mol}^{\circ} \mathrm{C}\right)\left(15.0^{\circ} \mathrm{C}\right)=150 . \mathrm{J} \\
& \mathrm{w}=-\mathrm{P} \Delta \mathrm{~V}=-(1.00 \mathrm{~atm})(1.25 \mathrm{~L})(101.3 \mathrm{~J} / \mathrm{L} \mathrm{~atm})=-127 \mathrm{~J}
\end{aligned}
$$

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=150 . \mathrm{J}-127 \mathrm{~J}=\underline{23 \mathrm{~J}}
$$

## Enthalpy

Consider first law at constant pressure,

$$
\begin{aligned}
& \Delta E=q_{p}+w_{p} \\
& \Delta E=q_{p}-P \Delta V \\
& q_{p}=\Delta E+P \Delta V
\end{aligned}
$$

$\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$ is a state function, renamed as $\Delta \mathrm{H}$, the change in enthalpy

$$
\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}
$$

For chemical reactions: $\Delta H_{r x n}=H_{\text {products }}-H_{\text {reactants }}$

## Calorimetry

Heat flow from a chemical reaction is measured with a calorimeter

A calorimeter traps heat...
Heat from a chemical reaction can be transferred completely to a water solution if both are contained in the calorimeter

The heat absorbed by a water solution is

$$
\mathrm{q}_{\text {soln }}=\mathrm{m}_{\text {soln }} \mathrm{C}_{\text {soln }} \Delta \mathrm{T}_{\text {soln }}
$$

The heat absorbed by the water solution is equal in magnitude to the heat lost by the reaction, but opposite in sign

$$
q_{r x n}=-q_{s o l n}
$$

50.0 mL of 1.00 M HCl are mixed with 25.0 mL of 1.50 M NaOH at $25.0^{\circ} \mathrm{C}$ in a calorimeter. After mixing, the solution was $31.6^{\circ} \mathrm{C}$, had a mass of 75.5 g , and (because it is mostly water) has a heat capacity of $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Find the heat of the reaction.

$$
\begin{aligned}
\mathrm{q}_{\text {sol'n }} & =\mathrm{C}_{\text {soln }} \mathrm{m}_{\text {soln }} \Delta \mathrm{T}_{\text {sol'n }} \\
& =\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)(75.5 \mathrm{~g})\left(6.6^{\circ} \mathrm{C}\right)=2100 \mathrm{~J} \\
\mathrm{q}_{\text {rxn }} & =-\mathrm{q}_{\text {sol'n }} \\
& =-(2100 \mathrm{~J})=-2100 \mathrm{~J}
\end{aligned}
$$

Reaction occurs under constant pressure, so $q_{p}=\Delta H$ and...

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-2100 \mathrm{~J}
$$

$\Delta H_{r x n}$ 's are usually given as J per mole of reactant or product

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ in $\mathrm{J} / \mathrm{mol}$ of NaCl

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$0.0250 \mathrm{~L} \times \frac{1.50 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.0375 \mathrm{~mol} \mathrm{NaCl}$
$0.0500 \mathrm{~L} \times \frac{1.00 \mathrm{~mol} \mathrm{HCl}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{HCl}}=0.0500 \mathrm{~mol} \mathrm{NaCl}$
$\frac{-2100 \mathrm{~J}}{0.0375 \mathrm{~mol} \mathrm{NaCl}}=-56000 \mathrm{~J} / \mathrm{mol} \mathrm{NaCl}$ or $-56 \mathrm{~kJ} / \mathrm{mol} \mathrm{NaCl}$

The $\Delta \mathrm{H}$ for the following reaction is $-45.0 \mathrm{~kJ} / \mathrm{mol}$ :

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})
$$

A mixture of two solutions is prepared by combining 25.0 mL of $0.880 \mathrm{M} \mathrm{Ag}^{+}$and 25.0 mL of $0.525 \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$, both at $22.0^{\circ} \mathrm{C}$. What is the final temperature of the mixture? (The mass of the solution is 50.7 g )
$0.0250 \mathrm{~L} \times \frac{0.880 \mathrm{~mol} \mathrm{Ag}^{+}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}}{2 \mathrm{~mol} \mathrm{Ag}^{+}}=0.0110 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}$
$0.0250 \mathrm{~L} \times \frac{0.525 \mathrm{~mol} \mathrm{CO}_{3}^{2-}}{\mathrm{L}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol} \mathrm{CO}_{3}^{2-}}=0.0131 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}$

The $\Delta H_{r x n}$ for this calorimeter...
$0.0110 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3} \times \frac{-45.0 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{CO}_{3}}=-0.495 \mathrm{~kJ} \quad(\mathrm{or}-495 \mathrm{~J})$
$q_{\text {soln }}=-q_{r \times n}=-(-495 \mathrm{~J})=495 \mathrm{~J}$
$\mathrm{q}_{\text {sol'n }}=\mathrm{C}_{\text {sol'n }} \mathrm{m}_{\text {soln }} \Delta \mathrm{T}_{\text {sol'n }}$
$\Delta \mathrm{T}_{\text {soln }}=\frac{\mathrm{q}_{\text {soln }}}{\mathrm{C}_{\text {soln }} \mathrm{m}_{\text {sol'n }}}=\frac{495 \mathrm{~J}}{\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(50.7 \mathrm{~g})}=2.33^{\circ} \mathrm{C}$
$\Delta \mathrm{T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}} \Rightarrow \mathrm{T}_{\mathrm{f}}=\Delta \mathrm{T}+\mathrm{T}_{\mathrm{i}} \Rightarrow \mathrm{T}_{\mathrm{f}}=2.33^{\circ} \mathrm{C}+22.0^{\circ} \mathrm{C}=\underline{24.3^{\circ} \mathrm{C}}$
$\Delta H_{r x n}$ 's (heats of reactions) are experimentally determined with calorimeters

When q is measured in a constant volume calorimeter, it equals the state function $\Delta \mathrm{E}$

$$
\begin{aligned}
& \Delta \mathrm{E}=\mathrm{q}+\mathrm{W} \\
& \Delta \mathrm{E}=\mathrm{q}-\mathrm{P} \Delta \mathrm{~V} \\
& \Delta \mathrm{E}=\mathrm{q}_{\mathrm{v}}
\end{aligned}
$$

A constant volume calorimeter is called a bomb calorimeter

Wire for electric
ignition


To measure the energy of combustion of $\mathrm{C}_{8} \mathrm{H}_{18}, 0.5269 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ are burned in a bomb calorimeter that has a heat capacity of 11.3 $\mathrm{kJ} /{ }^{\circ} \mathrm{C}$. If the calorimeter's temperature increases $2.25{ }^{\circ} \mathrm{C}$, find $\mathrm{q}_{\text {comb }}$ in $\mathrm{kJ} / \mathrm{mol}_{8} \mathrm{H}_{18}$

$$
\begin{aligned}
& \mathrm{q}_{\text {calor }}=\mathrm{C}_{\text {calor }} \Delta \mathrm{T}_{\text {calor }}=\left(11.3 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(2.25^{\circ} \mathrm{C}\right)=25.4 \mathrm{~kJ} \\
& \mathrm{q}_{\text {comb }}=-\mathrm{q}_{\text {calor }}=-(25.4 \mathrm{~kJ})=-25.4 \mathrm{~kJ}
\end{aligned}
$$

$$
0.5269 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{114.26 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}}=0.004611 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}
$$

$$
\frac{-25.4 \mathrm{~kJ}}{0.004611 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}=-5510 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{8} \mathrm{H}_{18}
$$

The energy of combustion of benzene is $-41.8 \mathrm{~kJ} / \mathrm{g}$. If a 0.3143 g sample of benzene is burned in a bomb calorimeter with a heat capacity of $10.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ and an original temperature of $21.42{ }^{\circ} \mathrm{C}$, find the final temperature of the bomb calorimeter.

$$
\begin{aligned}
& \mathrm{q}_{\text {comb }}=0.3143 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{-41.8 \mathrm{~kJ}}{\mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}}=-13.1 \mathrm{~kJ} \\
& \mathrm{q}_{\text {calor }}=-\mathrm{q}_{\text {comb }}=-(-13.1 \mathrm{~kJ})=13.1 \mathrm{~kJ} \\
& \mathrm{q}_{\text {calor }}=\mathrm{C}_{\text {calor }} \Delta \mathrm{T}_{\text {calor }} \Rightarrow \Delta \mathrm{T}_{\text {calor }}=\frac{\mathrm{q}_{\text {calor }}}{\mathrm{C}_{\text {calor }}}=\frac{13.1 \mathrm{~kJ}}{10.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}}=1.22^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}} \Rightarrow \mathrm{~T}_{\mathrm{f}}=\Delta \mathrm{T}+\mathrm{T}_{\mathrm{i}}=1.22^{\circ} \mathrm{C}+21.42{ }^{\circ} \mathrm{C}=22.64^{\circ} \mathrm{C}
\end{aligned}
$$

Extensive Properties depend on the amount of material...

Enthalpy $(\Delta \mathrm{H})$ is an extensive property
burn 1 gallon of gasoline: $\Delta \mathrm{H}_{\mathrm{rxn}}=-115 \mathrm{MJ}$
burn 2 gallons of gasoline: $\Delta \mathrm{H}_{\mathrm{rxn}}=-230 \mathrm{MJ}$

For... $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-92 \mathrm{~kJ}$
The $\Delta \mathrm{H}$ value means -92 kJ per 1 mole $\mathrm{N}_{2}$ reacted... or -92 kJ per 3 moles $\mathrm{H}_{2}$ reacted... or -92 kJ per 2 moles of $\mathrm{NH}_{3}$ produced!

## $\Delta H$ versus $\Delta E$

Reactants and products in chemical reaction (system) can be thought of as initial and final states


Two different paths can lead to the same internal energy change in system


Calculate the difference in kJ between $\Delta \mathrm{E}$ and $\Delta \mathrm{H}$ for the decomposition of one mole of ammonium chloride at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\Delta \mathrm{E}=\Delta \mathrm{H} & -\mathrm{P} \Delta \mathrm{~V} \\
\Delta \mathrm{E}-\Delta \mathrm{H} & =-\mathrm{P} \Delta \mathrm{~V}(\mathrm{~s}) \rightarrow-\Delta \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \\
& =-(2-0)(8.314 \mathrm{~J} / \mathrm{molK})(298 \mathrm{~K}) \\
& =-4.95 \mathrm{~kJ}
\end{aligned}
$$

$\Delta \mathrm{H}=+176.0 \mathrm{~kJ}$
$\Delta \mathrm{E}=+176.0 \mathrm{~kJ}-4.95 \mathrm{~kJ}=171.0 \mathrm{~kJ}$ ( $<3 \%$ difference! $)$
Pressure-volume work is usually insignificant, therefore $\Delta H \sim \Delta E$ !

## Hess' Law

Hess' Law
Because enthalpy is a state function, the change in enthalpy $(\Delta \mathrm{H})$ is the same whether the reaction takes place in one step or a series of steps

If... reaction $=$ reaction $(1)+$ reaction $(2)+\ldots$

Then...

$$
\begin{array}{rll}
\Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\ldots & \\
\mathrm{S}+\mathrm{O}_{2} & \rightarrow \mathrm{SO}_{2} & \Delta \mathrm{H}=-180 \mathrm{~kJ} \\
\mathrm{SO}_{2}+\mathrm{Cl}_{2} & \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2} & \Delta \mathrm{H}=112 \mathrm{~kJ} \\
\hline \mathrm{~S}+\mathrm{O}_{2}+\mathrm{Cl}_{2} & \rightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2} & \Delta \mathrm{H}=-68 \mathrm{~kJ}
\end{array}
$$

To use Hess' Law:

1. If a reaction is reversed, the sign of $\Delta H$ is changed
2. If the coefficients in a balanced equation are multiplied by an integer, the value of $\Delta \mathrm{H}$ is multiplied by that integer

$$
\begin{array}{ll}
\mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{XeF}_{4}(\mathrm{~g}) & \Delta \mathrm{H}=-251 \mathrm{~kJ} \\
\mathrm{XeF}_{4}(\mathrm{~g}) \rightarrow \mathrm{Xe}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=251 \mathrm{~kJ} \\
2 \mathrm{XeF}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{Xe}(\mathrm{~g})+4 \mathrm{~F}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=502 \mathrm{~kJ}
\end{array}
$$

From the reactions:

$$
\begin{aligned}
2 \mathrm{O}_{3} & \rightarrow 3 \mathrm{O}_{2} & \Delta \mathrm{H}=-428 \mathrm{~kJ} \\
\mathrm{O}_{2} & \rightarrow 2 \mathrm{O} & \Delta \mathrm{H}=496 \mathrm{~kJ} \\
\mathrm{NO}+\mathrm{O}_{3} & \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} & \Delta \mathrm{H}=-199 \mathrm{~kJ}
\end{aligned}
$$

find $\Delta \mathrm{H}$ for: $\mathrm{NO}+\mathrm{O} \rightarrow \mathrm{NO}_{2}$

| $\mathrm{NO}+\mathrm{O}_{3}$ | $\rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$ | $\Delta \mathrm{H}=-199 \mathrm{~kJ}$ |
| ---: | :--- | :--- |
| O | $\rightarrow 1 / 2 \mathrm{O}_{2}$ | $\Delta \mathrm{H}=-248 \mathrm{~kJ}$ |
| $3 / 2 \mathrm{O}_{2}$ | $\rightarrow \mathrm{O}_{3}$ | $\Delta \mathrm{H}=214 \mathrm{~kJ}$ |
| $\mathrm{NO}+\mathrm{O}$ | $\rightarrow \mathrm{NO}_{2}$ | $\Delta \mathrm{H}=-233 \mathrm{~kJ}$ |

## Enthalpy of Formation

Formation Reaction
A reaction that forms 1 mole of a substance from the elements composing it

The formation reaction of $\mathrm{NO}_{2}(\mathrm{~g})$ :

$$
1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

Heat of Formation $\left(\Delta \mathrm{H}_{\mathrm{f}}\right)$
The enthalpy for a formation reaction
Heat of Formation is usually given as Standard Heat of Formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
"o" means reactants and products are in the standard states

Standard State:

1. For a gas, pressure is 1 atm
2. For a substance in solution, molarity is 1 M
3. For an element...
how it exists at room temperature and pressure!
$\Delta H_{f}{ }^{0}$ of elements in their standard state equals zero!
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ 's and Hess' Law can be used to calculate the $\Delta \mathrm{H}^{\circ}$ for any reaction


Elements

$$
\begin{gathered}
\Delta \mathrm{H}^{\circ}=\Delta \mathrm{H}_{1}^{\circ}+\Delta \mathrm{H}^{\circ}{ }_{2} \\
\Delta \mathrm{H}_{\mathrm{r} \mathrm{\times n}}=-\Delta \mathrm{H}_{\text {react }}^{\circ}+\Delta \mathrm{H}_{\text {prod }}^{\circ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\Delta \mathrm{H}_{\text {prod }}^{\circ}-\Delta \mathrm{H}_{\text {react }}^{\circ}
\end{gathered}
$$

$\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$ equals $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ of products, minus $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ of reactants, each multiplied by their coefficient in the balanced equation

Find the standard enthalpy change for

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \Delta \mathrm{H}_{\mathrm{NH}_{3}}^{\circ}=-46 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{O}_{2}}^{\circ}=0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{NO}_{2}}^{\circ}=34 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{H}_{2} \mathrm{O}}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}= \Delta \mathrm{H}_{\text {Products }}^{\circ}-\Delta \mathrm{H}_{\text {Reactants }}^{\circ} \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=[(4 \mathrm{~mol} \times 34 \mathrm{~kJ} / \mathrm{mol})+(6 \mathrm{~mol} \mathrm{x}-286 \mathrm{~kJ} / \mathrm{mol})] \\
&-[(4 \mathrm{~mol} \mathrm{x}-46 \mathrm{~kJ} / \mathrm{mol})+(7 \mathrm{~mol} \times 0 \mathrm{~kJ} / \mathrm{mol})] \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1396 \mathrm{~kJ}
\end{aligned}
$$

Find the standard enthalpy change for

$$
\begin{aligned}
& 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \Delta \mathrm{H}_{\mathrm{CH}}^{3} \mathrm{OH}= \\
& \Delta \mathrm{H}_{\mathrm{H}_{2} \mathrm{O}}^{\circ}=-289 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{CO}_{2}}^{\circ}=-394 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}= \Delta \mathrm{H}_{\text {Products }}^{\circ}-\Delta \mathrm{H}_{\text {Reactants }}^{\circ} \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}= {[(2 \mathrm{molx}-394 \mathrm{~kJ} / \mathrm{mol})+(4 \mathrm{~mol} \mathrm{x}-286 \mathrm{~kJ} / \mathrm{mol})] } \\
&-[(2 \mathrm{~mol} \mathrm{x}-239 \mathrm{~kJ} / \mathrm{mol})+(3 \mathrm{~mol} \times 0 \mathrm{~kJ} / \mathrm{mol})] \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1454 \mathrm{~kJ}
\end{aligned}
$$

