Outline

- Equilibrium Condition
- Equilibrium Constant
- Reaction Quotient
- Equilibrium Problems
- Le Chatelier's Principle

Equilibrium Condition

All reactions proceed in both directions...

$$H_2 + Cl_2 \rightleftharpoons 2HCl$$

The rate of the forward and reverse rxns depend on <u>temperature</u> and the <u>concentrations</u>

$$R_f = k_f [H_2][Cl_2]$$

$$R_r = k_r [HCI]^2$$

The net direction of the reaction is determined by the rates of the reactions, relative to one another

In a container with H_2 , Cl_2 and HCl...

1. If
$$R_f > R_r$$
, then forward spontaneous: $H_2 + Cl_2 \rightarrow 2HCl$

2. If
$$R_f < R_r$$
, then reverse spontaneous: $H_2 + Cl_2 \leftarrow 2HCl$

3. If
$$R_f = R_r$$
, then equilibrium: $H_2 + Cl_2 \rightleftharpoons 2HCl$

<u>Chemical equilibrium</u> is the condition when the forward and reverse rates of reaction are equal

Reactions proceed until chemical equilibrium is established!

For a certain temperature,

$$k_f = 1.00 \text{ sec}^{-1} \text{ M}^{-1}$$
 and $k_r = 1.36 \text{ sec}^{-1} \text{ M}^{-1}$

where
$$R_f = k_f[H_2][Cl_2]$$
 and $R_r = k_r[HCl]^2$

In which direction is the rxn spontaneous?

[H ₂], M	[Cl ₂], M	[HCI], M	R _f , M/s	R _r , M/s	Direction
10	10	0	100	0	forward
9	9	2	81	5.4	forward
8	8	4	64	22	forward
7	7	6	49	49	equilibrium

Equilibrium Constant

At equilibrium...

$$R_f = R_r$$

$$k_f [H_2][Cl_2] = k_r [HCl]^2$$

$$\frac{k_f}{k_r} = \frac{[HCI]^2}{[H_2][Cl_2]}$$

equilibrium constant expression

 $k_f/k_r = K_{eq}$, the <u>equilibrium constant</u>

Equilibrium constants (K) are...

written without units!

constant only for constant temperature!

Equilibrium constants (K) give measure of how far a reaction goes...

For...
$$aA + bB \rightleftharpoons cC + dD$$

We write...
$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$
 (equilibrium constant expression)

K expression contains substances whose concentrations can change

gases (g) and dissolved substances (aq) are included solids (s) and liquids (l) are not included

Find K_{eq} for

$$CO_2(g) + C(s) \rightleftharpoons 2CO(g)$$

in a 2.0-L flask that contains 6.0 mol of CO₂ and 8.0 mol CO at equilibrium

$$K_{eq} = \frac{[CO]^2}{[CO_2]} = \frac{[4.0 \text{ M}]^2}{[3.0 \text{ M}]} = 5.33 \text{ M} = 5.3$$

What's [CO] if $[CO_2] = 2.0 \text{ M}$

$$K_{eq} = \frac{[CO]^2}{[CO_2]} \Rightarrow [CO] = \sqrt{[CO_2]K_{eq}} = \sqrt{(2.0)(5.3)} = 3.25 M = 3.3 M$$

For same temperature, what is K_{eq} for,

$$2CO_2(g) + 2C(s) \rightleftharpoons 4CO(g)$$

$$K'_{eq} = \frac{[CO]^4}{[CO_2]^2} = \left(\frac{[CO]^2}{[CO_2]}\right)^2 = (K_{eq})^2 = (5.3)^2 = 28$$

$$2CO(g) \rightleftharpoons CO_2(g) + C(s)$$

$$K''_{eq} = \frac{[CO_2]}{[CO]^2} = \left(\frac{1}{K_{eq}}\right) = \left(\frac{1}{5.3}\right) = \underline{0.19}$$

There are two types of K_{eq} 's:

- 1. K_C concentration units (M) are used in the expression
- 2. K_P pressure units (atm) are used in the expression

$$K_{C} = \frac{[HCI]^{2}}{[H_{2}][CI_{2}]}$$
 $K_{P} = \frac{p_{HCI}^{2}}{p_{H_{2}} p_{CI_{2}}}$

Numerical values for K_P and K_C are usually different...

$$K_P = K_C (RT)^{\Delta n}$$

R = 0.08206 L atm/mol K

 Δn = moles of products minus moles of reactants (for gases)

The K_C for the following rxn is 100.0 at 27 °C. Find K_P .

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

$$K_P = K_C (RT)^{\Delta n}$$

$$\Delta n = 2 - 3 = -1$$

$$K_P = (100.0)[(0.0821 L atm / mol K) (300. K)]^{-1}$$

= 4.06 mol / L atm

$$=$$
 4.06

$$K_C = 25$$
 at 20. °C for the reaction

$$2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$$

Find K_P.

$$K_{P} = K_{C} (RT)^{\Delta n}$$

$$\Delta n = 2 - 2 = 0$$

$$K_P = (25)[(0.0821 L atm / mol K) (293 K)]^0$$

$$= 25$$

Reaction Quotient

Reaction quotient (Q) is used to predict direction to reach equilibrium...

insert concentrations into equilibrium constant expression and compare value to K

if $Q < K_{eq}$, forward reaction is spontaneous

if $Q > K_{eq}$, reverse reaction is spontaneous

if $Q = K_{eq}$, reaction is at equilibrium

For some temperature, the following equilibrium has $K_{eq} = 16$:

$$2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$$

In which direction is the rxn spontaneous,

if
$$[H_2] = [O_2] = [H_2O] = 1.0 M$$
?

$$Q = \frac{[H_2O]^2}{[H_2]^2[O_2]} = \frac{(1.0)^2}{(1.0)^2(1.0)} = 1.0 < 16 = K_{eq} \implies \underline{forward}$$

if
$$[H_2] = 1.0 \text{ M}$$
, $[O_2] = 2.0 \text{ M}$, $[H_2O] = 6.0 \text{ M}$?

$$Q = \frac{[H_2O]^2}{[H_2]^2[O_2]} = \frac{(6.0)^2}{(1.0)^2(2.0)} = 18 > 16 = K_{eq} \implies \underline{reverse}$$

Equilibrium Problems

General types:

- 1. equilibrium conc's $\rightarrow K_{eq}$
- 2. $K_{eq} \rightarrow equilibrium conc's$
- 3. initial conc's, change $\rightarrow K_{eq}$

General steps:

- 1. initial conc's
- 2. changes (from coefficients)
- 3. equilibrium conc's
- 4. write K_{eq} expression
- 5. solve for "x"

A tank is filled with 0.20 atm of H_2 and 0.20 atm of I_2 . Find the equilibrium pressure of HI given

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $K_P = 36.0$
I 0.20 0.20 0
C $-x$ $-x$ $2x$
E 0.20 $-x$ 0.20 $-x$ 2x

$$K_{p} = \frac{p_{HI}^{2}}{p_{H_{s}}p_{I_{s}}} = \frac{[2x]^{2}}{[0.20 - x]^{2}} = 36.0 \implies \frac{2x}{0.20 - x} = 6.00 \implies \underline{x = 0.15}$$

$$p_{HI(eq)} = 2(0.15 \text{ atm}) = 0.30 \text{ atm}$$

0.10 mol of HCl gas is placed in a 2.0 L flask. What is the concentration of HCl at equilibrium?

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$
 $K_C = 75$

I 0 0 0.050

C x x - 2x

E x 0.050 - 2x

$$K_{eq} = \frac{[HCI]^2}{[H_2][CI_2]} = \frac{[0.050 - 2x]^2}{[x]^2} = 75 \Rightarrow \frac{0.050 - 2x}{x} = 8.7 \Rightarrow x = 0.0047 \text{ M}$$

$$[HCI]_{eq} = 0.050 M - 2(0.0047 M) = 0.041 M$$

Percent dissociation measures extent of reaction

% diss. =
$$\frac{\text{amount dissociated}}{\text{original amount}}$$
 (100 %)

What is the percent dissociation of HCI?

% diss. =
$$\frac{2x}{0.050}$$
 (100 %) = $\frac{2(0.0047)}{0.050}$ (100 %) = $\frac{19 \%}{0.050}$

2.0 mol NH $_3$ gas are placed in a 1.0 L container and at equilibrium 1.0 mol remains. Find $K_{\rm C}$.

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$
I 2.0 0 0
C - 2x x 3x
E 2.0 - 2x x 3x

$$[NH_3]_{eq} = 1.0 M = 2.0 - 2x \implies x = 0.50 M$$

 $[N_2]_{eq} = x = 0.50 M$
 $[H_2]_{eq} = 3x = 1.5 M$

$$K_C = \frac{[N_2][H_2]^3}{[NH_3]^2} = \frac{(0.50)(1.5)^3}{(1.0)^2} = \underline{1.7}$$

 0.84 mol PCl_5 and 0.18 mol PCl_3 are placed in a 1.0 L flask. At equilibrium 0.72 mol PCl_5 remains. Find K_C for

$$PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(g)$$
I 0.84 0.18 0
C - x x x
E 0.84 - x 0.18 + x x

$$[PCl_5]_{eq} = 0.72 M = 0.84 - x \Rightarrow x = 0.12 M$$

 $[PCl_3]_{eq} = 0.18 + x = 0.30 M$
 $[Cl_2]_{eq} = x = 0.12 M$

$$K_C = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{(0.30)(0.12)}{(0.72)} = \frac{0.050}{0.72}$$

Le Chatelier's Principle

Le Chatelier's Principle

If an external stress is applied to a system at equilibrium, the equilibrium position will change to counteract the stress

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

If H₂ is added...

equilibrium shifts right (more products are formed) K_{eq} stays the same

Change in Enthalpy (ΔH): The energy change during a chemical reaction

∆H positive... E absorbed endothermic

ΔH negative... E released exothermic

When this reaction occurs, energy is released...

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) + energy$$

 ΔH_{298} for reaction = -10.2 kJ (exothermic!)

If T increases... equilibrium shifts left (more reactants are formed) $K_{e\alpha}$ decreases

If T decreases... equilibrium shifts right K_{eq} increases

$$4HCl(g) + O_2(g) \rightleftharpoons 2Cl_2(g) + 2H_2O(l)$$
 $\Delta H = + 3.1 \text{ kJ / mol } O_2$

If T increases...

equilibrium shifts right

K_{eq} increases

If Cl₂ removed...

equilibrium shifts right

K_{eq} stays the same

If H₂O added...

no change; not in K_{eq} expression!

If P increases...

equilibrium shifts right K_{eq} stays the same (pressure affects gases, less gas on right)

$$CO(g) + H_2O(I) \rightleftharpoons CO_2(g) + H_2(g)$$
 $\Delta H = + 4.1 \text{ kJ}$

Stress	Shift	$\Delta[CO_2]$
add CO	right	incr
add H ₂ O	none	no
add H ₂	left	decr
add CO ₂	left	incr
incr T	right	incr
decr T	left	decr
incr P	left	decr
decr P	right	incr

The equilibrium concentrations of 0.30 M HCl, 0.20 M $\rm H_2$, and 0.10 M $\rm Cl_2$ are all in a 1.0 L flask. Then 0.10 mol $\rm Cl_2$ is added. Find the new equilibrium concentration of HCl.

$$2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$$
E 0.30 0.20 0.10
I 0.30 0.20 0.20
C + 2x - x
E 0.30 + 2x 0.20 - x 0.20 - x

Find K_C from initial eq. conc.'s:

$$K_C = \frac{[H_2][Cl_2]}{[HCl]^2} = \frac{[0.20 \text{ M}][0.10 \text{ M}]}{[0.30 \text{ M}]^2} = 0.22$$

The equilibrium concentrations of 0.30 M HCl, 0.20 M $\rm H_2$, and 0.10 M $\rm Cl_2$ are all in a 1.0 L flask. Then 0.10 mol $\rm Cl_2$ is added. Find the new equilibrium concentration of HCl.

Find new eq. conc.'s:

$$0.22 = \frac{[0.20 - x]^2}{[0.30 + 2x]^2} \implies 0.47 = \frac{0.20 - x}{0.30 + 2x} \implies x = 0.030 \text{ M}$$

$$[HCI] = 0.30 + 2x = 0.36 M$$

A flask is filled with the equilibrium pressures 0.25 atm N_2 , 0.25 atm O_2 , and 0.40 atm NO. Then 0.10 atm of NO is added. What are the new equilibrium pressures.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$
E 0.25 0.25 0.40
I 0.25 0.25 0.50
C $x \quad x \quad -2x$
E 0.25 + $x \cdot 0.25 + x \cdot 0.50 - 2x$

Find K_P from initial eq. prs.'s:

$$K_p = \frac{p_{NO}^2}{p_{N_2}p_{O_2}} = \frac{[0.40 \text{ atm}]^2}{[0.25 \text{ atm}]^2} = 2.\underline{5}6$$

A flask is filled with the equilibrium pressures 0.25 atm N_2 , 0.25 atm O_2 , and 0.40 atm NO. Then 0.10 atm of NO is added. What are the new equilibrium pressures.

Find new eq. prs.'s:

$$2.\underline{5}6 = \frac{[0.50 - 2x]^2}{[0.25 + x]^2} \implies 1.6 = \frac{0.50 - 2x}{0.25 + x} \implies x = 0.028 \text{ atm}$$

$$[N_2] = 0.25 + x = 0.28 atm$$

$$[O_2] = 0.25 + x = 0.28 atm$$

$$[NO] = 0.50 - 2x = 0.44 atm$$