Outline

- Buffer Solutions
- Titrations
- Solubility Equilibria
- Precipitation Problems
- Lewis Acids and Bases
- Complex Ion Equilibria
- Solubility An Equilibrium Position

Buffers are solutions that resist changes in pH

Buffers contain significant amounts of a weak acid (HA) and its conjugate base (A^{-})

HA neutralizes added base:

$$HA + OH^- \rightarrow A^- + H_2O$$

A⁻ neutralizes added acid:

$$A^- + H_3O^+ \rightarrow HA + H_2O$$

Resistance to pH change increases with increasing concentrations of the weak acid and its conjugate base

Acids ionize to form the conjugate base...

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

$$I \quad [HA] \qquad 0 \qquad [A^{-}]$$

$$E \quad [HA] - x \qquad x \qquad [A^{-}] + x$$

$$K_{a} = \frac{[H^{+}]_{eq} ([A^{-}] + x)}{([HA] - x)} \approx \frac{[H^{+}]_{eq} ([A^{-}])}{([HA])}$$

$$\Rightarrow -\log(K_a) = -\log\left(\frac{[H^+]_{eq}([A^-])}{([HA])}\right)$$

$$\Rightarrow pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

Henderson-Hasselbalch Eq.

The pH of a buffer is determined by the ratio of [A⁻] to [HA]

Solutions resist pH changes when...

$$0.1 < \frac{[A^-]}{[HA]} < 10$$

A buffer is most effective when the $[A^-] = [HA]...$

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right) \implies pH = pK_a + log(1) \implies pH = pK_a$$

To make an effective buffer at a specific pH... choose weak acid with $pK_a +/-1$ to the desired pH

A buffer is made by mixing...

1. a weak acid and a salt of its conjugate base

2. a weak base and a salt of its conjugate acid

3. a weak acid and a lesser amount of a strong base

4. a weak base and a lesser amount of a strong acid

You want a $CH_3CO_2H/CH_3CO_2^-$ buffer with a pH of 5.00 (K_a = 1.8 x 10⁻⁵). Find the [CH₃CO₂H] / [CH₃CO₂⁻] ratio in this buffer.

 $pK_a = -\log(K_a) = -\log(1.8 \times 10^{-5}) = 4.74$

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right) \implies 5.00 = 4.74 + log\left(\frac{[A^-]}{[HA]}\right)$$

$$\log\left(\frac{[A^{-}]}{[HA]}\right) = 0.26 \quad \Rightarrow \quad \frac{[A^{-}]}{[HA]} = 1.82 \quad \Rightarrow \quad \frac{[HA]}{[A^{-}]} = 0.55$$

What must be the molarity of sodium fluoride in a solution of 0.10 M hydrofluoric acid ($K_a = 3.5 \times 10^{-4}$) to make a buffer with a pH of 4.00?

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right) \implies 4.00 = 3.46 + log\left(\frac{[A^-]}{0.10 \text{ M}}\right)$$
$$log\left(\frac{[A^-]}{0.10 \text{ M}}\right) = 0.54 \implies \frac{[A^-]}{0.10 \text{ M}} = 3.46 \implies [A^-] = 0.35 \text{ M}$$

Find the pH of 1.00 L of buffer solution that is 1.00 M in acetic acid ($K_a = 1.76 \times 10^{-5}$) and 1.00 M sodium acetate if 0.01 moles of NaOH are added.

 $\frac{0.01 \text{ mol NaOH}}{1.00 \text{ L}} = 0.01 \text{ M NaOH} \implies \underline{0.01 \text{ M OH}}$

 $OH^{-}(aq) + CH_{3}CO_{2}H(aq) \rightarrow H_{2}O(I) + CH_{3}CO_{2}^{-}(aq)$

I 0.01 1.00 1.00 F 0 0.99 1.01

$$pH = pK_{a} + \log\left(\frac{[A^{-}]}{[HA]}\right) = -\log(1.76 \times 10^{-5}) + \log\left(\frac{1.01}{0.99}\right) = 4.76$$

Find the pH of 1.00 L of buffer solution that is 1.00 M in acetic acid ($K_a = 1.76 \times 10^{-5}$) and 1.00 M sodium acetate if 0.01 moles of HCl are added.

 $\frac{0.01 \text{ mol HCl}}{1.00 \text{ L}} = 0.01 \text{ M HCl} \implies 0.01 \text{ M H}^+$

 $H^+(aq) + CH_3CO_2^-(aq) \rightarrow CH_3CO_2H(aq)$

Ι	0.01	1.00	1.00
F	0	0.99	1.01

$$pH = pK_{a} + \log\left(\frac{[A^{-}]}{[HA]}\right) = -\log(1.76 \times 10^{-5}) + \log\left(\frac{0.99}{1.01}\right) = 4.75$$

Titrations

Three types of titrations to consider...

1. strong acid and strong base: $H^+ + OH^- \rightarrow H_2O$

2. strong acid and weak base: $H^+ + B \rightarrow HB^+$ $HB^+ \rightleftharpoons B + H^+$

3. weak acid and strong base: $HA + OH^- - A^- + H_2O \rightleftharpoons$

 $\begin{array}{rcl} \mathsf{HA} + \mathsf{OH}^{-} & \rightarrow & \mathsf{A}^{-} + \mathsf{H}_2\mathsf{O} \\ \mathsf{A}^{-} + \mathsf{H}_2\mathsf{O} & \rightleftharpoons & \mathsf{HA} + \mathsf{OH}^{-} \end{array}$

Strong – Strong Titrations

250.0 mL of 0.020 M NaOH is titrated with 0.10 M HCl. Calculate the pH of the solution after the addition of...

a. 10.0 mL HCl

Find molarities... $[OH^{-}] = 0.019 \text{ M} \text{ and } [H^{+}] = 0.0038 \text{ M}$

 $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

- I 0.0038 0.019
- F 0 0.015

pOH = -log(0.015) = 1.82

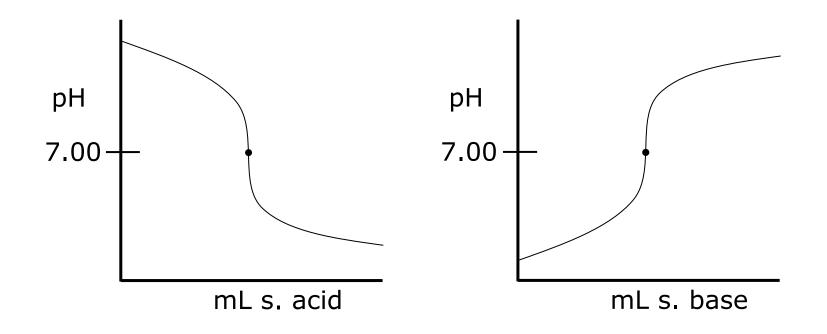
 $pH = 14.00 - 1.82 = \underline{12.18}$

b. 50.0 mL HCl

Find molarities... $[OH^-] = 0.017 \text{ M} \text{ and } [H^+] = 0.017 \text{ M}$ $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$ I 0.017 0.017 F 0 0

amount acid = amount base... stoichiometric point!

strong acid – strong base titrations: pH = 7.00 at stoichiometric point

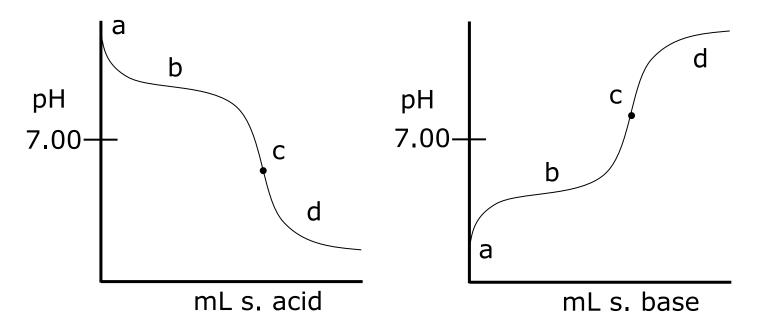

c. 100.0 mL HCl

Find molarities... $[OH^-] = 0.014 \text{ M} \text{ and } [H^+] = 0.029 \text{ M}$

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$

I 0.029 0.014
F 0.015 0

 $pH = -\log(0.015) = 1.82$


Titration curve is plot of pH vs. acid (base) added

Strong – Weak Titrations

Strong acid (base) – weak base (acid) titration curves have four regions:

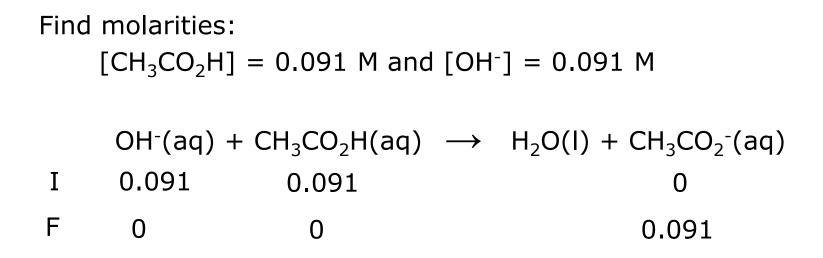
(a) initial, (b) buffer, (c) stoichiometric point, (d) excess

100.0 mL of 0.10 M acetic acid (CH_3CO_2H), $K_a = 1.76 \times 10^{-5}$, is titrated with 1.0 M sodium hydroxide. Determine the pH of the solution with...

a. 0 mL NaOH added (initial)

$$\begin{array}{ccc} CH_{3}CO_{2}H(aq) \rightleftharpoons H^{+}(aq) + CH_{3}CO_{2}^{-}(aq) \\ I & 0.10 & 0 & 0 \\ E & 0.10 - x & x & x \end{array}$$

$$1.76 \times 10^{-5} = \frac{x^2}{(0.10 - x)} \approx \frac{x^2}{(0.10)} \implies x = 1.3 \times 10^{-3} \text{ M} = [\text{H}^+]$$
$$p\text{H} = -\log(1.3 \times 10^{-3} \text{ M}) = \underline{2.89}$$


b. 2.5 mL NaOH added (buffer)

Find molarities:

$$[CH_3CO_2H] = 0.098 \text{ M and } [OH^-] = 0.024 \text{ M}$$

 $OH^-(aq) + CH_3CO_2H(aq) \rightarrow H_2O(I) + CH_3CO_2^-(aq)$
I 0.024 0.098 0
F 0 0.074 0.024

$$pH = pK_{a} + \log\left(\frac{[A^{-}]}{[HA]}\right) = -\log(1.76 \times 10^{-5}) + \log\left(\frac{0.024}{0.074}\right) = 4.27$$

c. 10.0 mL NaOH added (stoichiometric point)

Not a buffer... Consider the ionization of the conjugate base!

c. 10.0 mL NaOH added (stoichiometric point)

$$\begin{array}{cccc} CH_{3}CO_{2}^{-}(aq) + H_{2}O &\rightleftharpoons CH_{3}CO_{2}H(aq) + OH^{-}(aq) \\ I & 0.091 & 0 & 0 \\ E & 0.091 - x & x & x \end{array}$$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.76 \times 10^{-5}} = 5.68 \times 10^{-10}$$

 $5.\underline{68} \times 10^{-10} = \frac{x}{(0.091 - x)} \approx \frac{x}{(0.091)} \implies x = 7.2 \times 10^{-6} \text{ M} = [\text{OH}^-]$

 $pOH = -\log(7.2 \times 10^{-6} M) = 5.14 \implies pH = 14.00 - 5.14 = 8.86$

d. 12.5 mL NaOH added (excess)

Find molarities: $[CH_{3}CO_{2}H] = 0.089 \text{ M and } [OH^{-}] = 0.11 \text{ M}$ $OH^{-}(aq) + CH_{3}CO_{2}H(aq) \rightarrow H_{2}O(I) + CH_{3}CO_{2}^{-}(aq)$ $I \quad 0.11 \qquad 0.089 \qquad 0$ $F \quad 0.02 \qquad 0 \qquad 0.089$ $pOH = -\log(0.02 \text{ M}) = 1.7$

pH = 14.00 - 1.7 = 12.3

Stoichiometric point can be identified with...

1. pH meter: monitor pH during titration stoichiometric point is middle of steep change

2. indicator: weak acid (c. base) changes during titration

HIn
$$\stackrel{OH^-}{\rightleftharpoons}$$
 In⁻

end point indicated by color change

want $pK_a = pH + / - 1$ at stoichiometric point

A weakly acidic solution is prepared by dissolving 1.016 g benzoic acid into 25.00 mL water, and titrated with 0.2040 M NaOH.

MM = 122.12 g/mol and $K_a = 6.4 \times 10^{-5}$

a. How many mL's to reach stoichiometric point?

$$1.016 \text{ g BH} \times \frac{1 \text{ mol BH}}{122.12 \text{ g BH}} \times \frac{1}{0.02500 \text{ L}} = 0.3328 \text{ M}$$

25.00 mL x $\frac{0.3328 \text{ mol}}{1 \text{ L}}$ x $\frac{1 \text{ mol NaOH}}{1 \text{ mol BH}}$ x $\frac{1 \text{ L}}{0.2040 \text{ mol}}$ = 40.78 mL

b. What is pH at stoichiometric point?

Find molarities: $[BH] = 0.1265 \text{ M and } [OH^-] = 0.1265 \text{ M}$ $OH^-(aq) + BH(aq) \rightarrow H_2O(I) + B^-(aq)$ I 0.1265 0.1265 0 F 0 0 0 0.1265 b. What is pH at stoichiometric point?

$$B^{-}(aq) + H_2O \rightleftharpoons BH(aq) + OH^{-}(aq)$$

$$I \quad 0.1265 \qquad 0 \qquad 0$$

$$E \quad 0.1265 - x \qquad x \qquad x$$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{6.4 \times 10^{-5}} = 1.56 \times 10^{-10}$$

$$1.56 \times 10^{-10} = \frac{x^2}{(0.1265 - x)} \approx \frac{x^2}{(0.1265)}$$

 $x = 4.5 \times 10^{-6} M = [OH^{-}] (0.004\%)$

 $pOH = -\log(4.44 \times 10^{-6} M) = 5.35 \implies pH = 8.65$

c. What indicator should be used? What color change occurs?

8.65 +/- 1 = 7.65 and 9.65

thymol blue (chose closest!)

<u>yellow (acidic) \rightarrow blue (basic)</u>

Indicator	рК _а	Acidic Color	Basic Color
methyl red	5.0	red	yellow
phenol red	7.9	yellow	red
thymol blue	8.9	yellow	blue
phenolphthalein	9.4	colorless	pink

Solubility Equilibria

Solids dissolve (dissociate) and ions precipitate (associate) in a competing process

Equilibrium achieved when rate of dissolution and precipitation are equal

$$AB(s) \rightleftharpoons A^{+}(aq) + B^{-}(aq) \qquad K_{eq} = [A^{+}][B^{-}]$$

A $\rm K_{eq}$ for a salt dissociating in water is called a $\rm K_{sp}$, the solubility product constant

<u>Solubility</u> is the amount of substance that can be dissolved

The solubility of calcium fluoride is 0.017 g / L. Find its K_{sp} .

$$CaF_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

$$I \qquad 0 \qquad 0$$

$$E \qquad x \qquad 2x$$

 $x = solubility of CaF_2 in mol / L$

$$x = \frac{0.017 \text{ g CaF}_2}{\text{L}} \times \frac{1 \text{ mol CaF}_2}{78.1 \text{ g CaF}_2} = 2.2 \times 10^{-4} \text{ M}$$

 $K_{sp} = [Ca^{2+}][F^{-}]^{2} = (x)(2x)^{2} = 4x^{3} = 4.3 \times 10^{-11}$

The solubility of iron (III) hydroxide (MM = 106.8 g/mol) is 0.130 g for every 100. mL.... Find the K_{sp} .

$$Fe(OH)_{3}(s) \rightleftharpoons Fe^{3+}(aq) + 3OH^{-}(aq)$$

$$I \qquad 0 \qquad 0$$

$$E \qquad x \qquad 3x$$

x =solubility of Fe(OH)₃ in mol / L

$$x = \frac{0.130 \text{ g Fe(OH)}_3}{0.100 \text{ L}} \times \frac{1 \text{ mol Fe(OH)}_3}{106.8 \text{ g Fe(OH)}_3} = 1.22 \times 10^{-2} \text{ M}$$

$$K_{sp} = [Fe^{3+}][OH^{-}]^{3} = (x)(3x)^{3} = 27x^{4} = 5.98 \times 10^{-7}$$

Find the molar solubility (mol/L) of calcium sulfate if its $K_{sp} = 2.40 \times 10^{-5}$. CaSO₄(s) \rightleftharpoons Ca²⁺(aq) + SO₄²⁻(aq) I 0 0 E x x x

 $x = molar solubility of CaSO_4$

 $\mathsf{K}_{\mathsf{sp}} = [\mathsf{Ca}^{2+}][\mathsf{SO}_4^{2-}] \Longrightarrow 2.40 \times 10^{-5} = (\mathsf{x})(\mathsf{x}) \Longrightarrow \mathsf{x} = \underline{0.00490}\,\mathsf{M}$

What is the solubility of $CaSO_4$ (136.2 g / mol) in g/100 mL?

$$\frac{0.00490 \text{ mol CaSO}_4}{\text{L}} \times \frac{136.2 \text{ g}}{\text{mol}} \times \frac{0.1 \text{ L}}{100 \text{ mL}} = \frac{0.0667 \text{ g CaSO}_4}{100 \text{ mL}}$$

Find the solubility of lead (II) iodide (MW = 461.2 g / mol) in g / 100 mL if its $K_{sp} = 8.30 \times 10^{-9}$.

$$PbI_{2}(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$$

$$I \qquad 0 \qquad 0$$

$$E \qquad x \qquad 2x$$

 $x = molar solubility of PbI_2$

 $K_{sp} = [Pb^{2+}][I^{-}]^{2} \Longrightarrow 8.30 \times 10^{-9} = (x)(2x)^{2} \Longrightarrow x = 1.28 \times 10^{-3} \text{ M}$

 $\frac{0.00128 \text{ mol PbI}_2}{L} \times \frac{461.2 \text{ g}}{\text{mol}} \times \frac{0.1 \text{ L}}{100 \text{ mL}} = \frac{0.0590 \text{ g PbI}_2}{100 \text{ mL}}$

 K_{sp} 's can be used to compare relative solubilities of salts Salts with same number of ions: compare K_{sp} 's directly!

Salt	K _{sp}	Solubility
NiCO ₃	1.4 x 10 ⁻⁷	greatest
AgOH	2.0 x 10 ⁻⁸	\downarrow
MnS	2.3 x 10 ⁻¹³	least

Salts with different number of ions: calculate solubility!

Solubility of a salt is decreased by the presence of ions involved in equilibrium reaction: <u>common ion effect</u>

What is the molar solubility of iron (II) carbonate in 0.10 M sodium carbonate? $K_{sp} = 2.1 \times 10^{-11}$

 $Na_2CO_3 \Rightarrow 0.20$ M Na^+ and 0.10 M $CO_3{}^{2\text{-}}$

$FeCO_3(s) \rightleftharpoons$	Fe ²⁺ ($(aq) + CO_3^{2-}(aq)$
Ι	0	0.10
Е	Х	x + 0.10

 $x = molar solubility of FeCO_3$

 $K_{sp} = [Fe^{2+}][CO_3^{2-}] \Rightarrow 2.1 \times 10^{-11} = (x)(x + 0.10) \approx (x)(0.10)$

 $x = 2.1 \times 10^{-10} \text{ M FeCO}_3$

What is the molar solubility of silver phosphate ($K_{sp} = 1.8 \times 10^{-18}$) in 0.20 M silver nitrate?

 $\text{AgNO}_3 \Rightarrow 0.20$ M Ag^+ and 0.20 M NO_3^-

 $Ag_{3}PO_{4}(s) \rightleftharpoons 3Ag^{+}(aq) + PO_{4}^{3-}(aq)$ $I \qquad 0.20 \qquad 0$ $E \qquad 3x + 0.20 \qquad x$

 $x = molar solubility of Ag_3PO_4$

 $K_{sp} = [Ag^+]^3 [PO_4^{3-}] \Rightarrow 1.8 \times 10^{-18} = (0.20 + 3x)^3 (x) \approx (0.20)^3 (x)$

 $x = 2.2 \times 10^{-16} M Ag_3 PO_4$

Ion product, Q, is used to predict precipitation

- 1. Q > K supersaturated; precipitation occurs
- 2. Q < K unsaturated; can dissolve more!
- 3. Q = K saturated; precipitation and dissolution occur

Precipitation Problems

Will barium hydroxide precipitate in a solution that is 0.20 M in sodium hydroxide and 0.10 M in barium nitrate? The K_{sp} for barium hydroxide is 5.0 x 10⁻³.

NaOH \Rightarrow 0.20 M Na⁺ and 0.20 M OH⁻ Ba(NO₃)₂ \Rightarrow 0.10 M Ba²⁺ and 0.20 M NO₃⁻

 $Ba(OH)_2(s) \rightleftharpoons Ba^{2+}(aq) + 2OH^{-}(aq)$

 $K_{sp} = [Ba^{2+}][OH^{-}]^{2} = 5.0 \times 10^{-3}$ $Q = (0.10)(0.20)^{2} = 4.0 \times 10^{-3}$

If Q < K, no precipitate forms

Will nickel (II) carbonate ($K_{sp} = 1.4 \times 10^{-7}$) precipitate in a 1.00 L solution of 0.010 M nickel (II) nitrate and 0.025 M sodium carbonate?

 $Ni(NO_3)_2 \Rightarrow 0.010 \text{ M Ni}^{2+} \text{ and } 0.020 \text{ M NO}_3^{-}$ $Na_2CO_3 \Rightarrow 0.050 \text{ M Na}^+ \text{ and } 0.025 \text{ M CO}_3^{2-}$

$$NiCO_3(s) \rightleftharpoons Ni^{2+}(aq) + CO_3^{2-}(aq)$$

$$K_{sp} = [Ni^{2+}][CO_3^{2-}] = 1.4 \times 10^{-7}$$

$$Q = (0.010)(0.025) = 2.5 \times 10^{-4}$$

If Q > K, precipitate forms

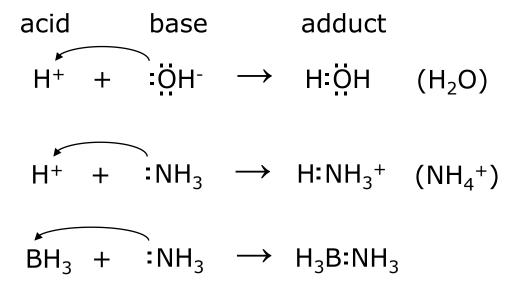
What is the concentration of Ni^{2+} at equilibrium?

Ni²⁺ reacts with CO_3^{2-} ...

	Ni ²⁺ (aq) + CO ₃ ²⁻ (aq)		\rightarrow	$NiCO_3(s)$
Ι	0.010	0.025		"0″
F	0	0.015		"0.010″

What is the concentration of Ni²⁺ at equilibrium?

Remaining CO_3^{2-} acts as common ion...


$$\begin{split} \text{NiCO}_{3}(s) &\rightleftharpoons \text{Ni}^{2+}(aq) + \text{CO}_{3}^{2-}(aq) \\ & \text{I} & 0 & 0.015 \\ & \text{E} & x & x + 0.015 \\ \\ \text{K}_{sp} = [\text{Ni}^{2+}][\text{CO}_{3}^{2^{-}}] &\Rightarrow 1.4 \times 10^{-7} = (x)(x + 0.015) \approx (x)(0.015) \\ & [\text{Ni}^{2+}] = x = 9.3 \times 10^{-6} \text{ M} \end{split}$$

Lewis Acids and Bases

Lewis acids are electron pair acceptors

Lewis bases are electron pair donors

Empty orbital of acid accepts electron pair from base in acid-base reactions

Complex Ion Equilibria

<u>Complex ions</u> are formed from reactions of metal (atoms) ions and ligands

Ligands are molecules (ions) that donate electron pairs (Lewis bases!) $Aq^+ + 2:(NH_3) \rightarrow Ag(NH_3)_2^+$

Ligands add to metal ions in individual steps, each step described by a formation constant, K_f

 $\begin{array}{rcl} Ag^{+} + NH_{3} &\rightleftharpoons Ag(NH_{3})^{+} & K_{f1} = 2.1 \times 10^{3} \\ \\ Ag(NH_{3})^{+} + NH_{3} &\rightleftharpoons Ag(NH_{3})_{2}^{+} & K_{f2} = 8.2 \times 10^{3} \\ \\ Ag^{+} + 2NH_{3} &\rightleftharpoons Ag(NH_{3})_{2}^{+} & K_{f} = K_{f1} \times K_{f2} = 1.7 \times 10^{7} \end{array}$

What are the concentrations of all species in a solution that is initially $1.0 \times 10^{-3} \text{ M Ag}^+$ and 1.0 M NH_3 ?

 $Ag^{+} + 2NH_{3} \rightarrow Ag(NH_{3})_{2}^{+}$ $K_{f} = 1.7 \times 10^{7}$ I 0.0010 1.0 0

F 0 0.<u>9</u>98 0.0010

 $Ag^+ + 2NH_3 \rightleftharpoons Ag(NH_3)_2^+$

- I 0 0.<u>9</u>98 0.0010
- E x 0.<u>9</u>98 + 2x 0.0010 x

$$1.7 \times 10^{7} = \frac{(0.0010 - x)}{(x)(0.998 + 2x)^{2}} \approx \frac{0.0010}{(x)(0.998)^{2}} \implies x = 6 \times 10^{-11} \text{ M}$$

What are the concentrations of all species in a solution that is initially $1.0 \times 10^{-3} \text{ M Ag}^+$ and 1.0 M NH_3 ?

 $[Ag^+] = x = 6 \times 10^{-11} M$ $[NH_3] = 0.998 + 2x = 1M$ $[Ag(NH_3)_2^+] = 0.0010 - x = 0.0010 M$ $Ag(NH_3)^+ + NH_3 \rightleftharpoons Ag(NH_3)_2^+$ $K_{f2} = \frac{[Ag(NH_3)_2^+]}{[Ag(NH_3)^+][NH_3]} \implies [Ag(NH_3)^+] = \frac{[Ag(NH_3)_2^+]}{K_{f2}[NH_3]}$ $[Ag(NH_3)^+] = \frac{(0.0010)}{(8.2 \times 10^3)(1)} = \underline{1 \times 10^{-7} M}$

K_f values can be used to predict stability of complex ions, sometimes called <u>stability constants</u>

Which is more stable?

$$\begin{array}{ll} \text{Hg}(\text{Cl})_{4}^{2^{-}} (\text{K}_{\text{f}} = 1.2 \times 10^{15}) \\ \text{Hg}(\text{CN})_{4}^{2^{-}} (\text{K}_{\text{f}} = 3 \times 10^{41}) & \text{Much more stable!} \\ \end{array}$$

$$\begin{array}{ll} \text{Hg}(\text{Cl})_{4}^{2^{-}} \rightleftharpoons \text{Hg}^{2+} + 4\text{Cl}^{-} & \text{K} = (\text{K}_{\text{f},\text{Cl}})^{-1} \\ \text{Hg}^{2+} + 4\text{CN}^{-} \rightleftharpoons \text{Hg}(\text{CN})_{4}^{2^{-}} & \text{K} = \text{K}_{\text{f},\text{CN}} \\ \end{array}$$

$$\begin{array}{ll} \text{Hg}(\text{Cl})_{4}^{2^{-}} + 4\text{CN}^{-} \rightleftharpoons \text{Hg}(\text{CN})_{4}^{2^{-}} + 4\text{Cl}^{-} & \text{K} = (\text{K}_{\text{f},\text{Cl}})^{-1} \times \text{K}_{\text{f},\text{CN}} = 2 \times 10^{26} \\ \end{array}$$

$$\begin{array}{ll} \text{Hg}(\text{Cl})_{4}^{2^{-}} + 4\text{CN}^{-} \rightleftharpoons \text{Hg}(\text{CN})_{4}^{2^{-}} + 4\text{Cl}^{-} & \text{K} = (\text{K}_{\text{f},\text{Cl}})^{-1} \times \text{K}_{\text{f},\text{CN}} = 2 \times 10^{26} \\ \end{array}$$

$$\begin{array}{ll} \text{Large K, Hg}(\text{CN})_{4}^{2^{-}} & \text{will be formed!} \end{array}$$

Solubility – An Equilibrium Position

The solubility of a salt is an equilibrium position

For a given temperature...

a single value for the solubility product constant ($\rm K_{sp})$

an infinite number of possible solubilities!

Solubility can be affected by:

- 1. the common ion effect
- 2. complex ion formation

3. changes in pH

Complex Ions and Solubility

A number of insoluble salts can be dissolved upon formation of a complex ion...

AgCl $K_{sp} = 1.8 \times 10^{-10}$ Ag(NH₃)₂⁺ $K_{f} = 1.7 \times 10^{7}$ AgCl \rightleftharpoons Ag⁺ + Cl⁻ $K_{sp} = 1.8 \times 10^{-10}$ Ag⁺ + 2NH₃ \rightleftharpoons Ag(NH₃)₂⁺ $K_{f} = 1.7 \times 10^{7}$ AgCl + 2NH₃ \rightleftharpoons Ag(NH₃)₂⁺ + Cl⁻ $K' = K_{f} \times K_{sp} = 3.1 \times 10^{-3}$

How much greater? $3.1 \times 10^{-3} / 1.8 \times 10^{-10} = 17,000,000$ times!

pH and Solubility

The solubility of a salt containing basic anion increases with increasing acidity

Basic anions are c. bases of weak acids: OH⁻, S²⁻, CO₃²⁻, PO₄³⁻, C₂O₄²⁻, and CrO₄²⁻

Basic anions react with hydrogen ions to form weak acid

 $Mg(OH)_2(s) + 2H^+(aq) \rightleftharpoons Mg^{2+}(aq) + 2H_2O(I)$

 $Ba_3(PO_4)_2(s) + 6H^+(aq) \Rightarrow 3Ba^{2+}(aq) + 2H_3PO_4(aq)$

If K is large, salt will be soluble under acidic conditions!

How much more?

 $Mg(OH)_{2}(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq) K_{sp} = 2.1 \times 10^{-13}$ $2H^{+}(aq) + 2OH^{-}(aq) \rightleftharpoons 2H_{2}O(I) \qquad 1/K_{w}^{2} = 1.0 \times 10^{28}$

 $Mg(OH)_2(s) + 2H^+(aq) \Rightarrow Mg^{2+}(aq) + 2H_2O(I)$

 $K'' = K_{sp}/K_w^2 = 2.1 \times 10^{15}$... or 1.0 x 10²⁸ times greater!

Again, you say?

 $Ba_{3}(PO_{4})_{2}(s) \rightleftharpoons 3Ba^{2+}(aq) + 2PO_{4}^{3-}(aq) K_{sp} = 6 \times 10^{-39}$ $6H^{+}(aq) + 2PO_{4}^{3-}(aq) \rightleftharpoons 2H_{3}PO_{4}(aq) (1/K_{a1}K_{a2}K_{a3})^{2}$ $Ba_{3}(PO_{4})_{2}(s) + 6H^{+}(aq) \rightleftharpoons 3Ba^{2+}(aq) + 2H_{3}PO_{4}(aq)$

 $K'' = K_{sp}/(K_{a1}K_{a2}K_{a3})^2 = 6 \times 10^{-39}/[(7.5 \times 10^{-3})(6.2 \times 10^{-8})(4.2 \times 10^{-13})]^2$

= 1.6×10^5 ... or ~3 x 10^{43} times greater!